Macro to count number of arguments
Another possibility, which does not use sizeof
nor a GCC extension is to add the following to your code
#define PP_COMMASEQ_N() \
1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 0, 0
#define PP_COMMA(...) ,
#define PP_HASCOMMA(...) \
PP_NARG_(__VA_ARGS__, PP_COMMASEQ_N())
#define PP_NARG(...) \
PP_NARG_HELPER1( \
PP_HASCOMMA(__VA_ARGS__), \
PP_HASCOMMA(PP_COMMA __VA_ARGS__ ()), \
PP_NARG_(__VA_ARGS__, PP_RSEQ_N()))
#define PP_NARG_HELPER1(a, b, N) PP_NARG_HELPER2(a, b, N)
#define PP_NARG_HELPER2(a, b, N) PP_NARG_HELPER3_ ## a ## b(N)
#define PP_NARG_HELPER3_01(N) 0
#define PP_NARG_HELPER3_00(N) 1
#define PP_NARG_HELPER3_11(N) N
The result is
PP_NARG() // expands to 0
PP_NARG(x) // expands to 1
PP_NARG(x, 2) // expands to 2
Explanation:
The trick in these macros is that PP_HASCOMMA(...)
expands to 0 when called with zero or one argument and to 1 when called with at least two arguments. To distinguish between these two cases, I used PP_COMMA __VA_ARGS__ ()
, which returns a comma when __VA_ARGS__
is empty and returns nothing when __VA_ARGS__
is non-empty.
Now there are three possible cases:
__VA_ARGS__
is empty:PP_HASCOMMA(__VA_ARGS__)
returns 0 andPP_HASCOMMA(PP_COMMA __VA_ARGS__ ())
returns 1.__VA_ARGS__
contains one argument:PP_HASCOMMA(__VA_ARGS__)
returns 0 andPP_HASCOMMA(PP_COMMA __VA_ARGS__ ())
returns 0.__VA_ARGS__
contains two or more arguments:PP_HASCOMMA(__VA_ARGS__)
returns 1 andPP_HASCOMMA(PP_COMMA __VA_ARGS__ ())
returns 1.
The PP_NARG_HELPERx
macros are just needed to resolve these cases.
Edit:
In order to fix the func(0, )
problem, we need to test whether we have supplied zero
or more arguments. The PP_ISZERO
macro comes into play here.
#define PP_ISZERO(x) PP_HASCOMMA(PP_ISZERO_HELPER_ ## x)
#define PP_ISZERO_HELPER_0 ,
Now let's define another macro which prepends the number of arguments to an argument list:
#define PP_PREPEND_NARG(...) \
PP_PREPEND_NARG_HELPER1(PP_NARG(__VA_ARGS__), __VA_ARGS__)
#define PP_PREPEND_NARG_HELPER1(N, ...) \
PP_PREPEND_NARG_HELPER2(PP_ISZERO(N), N, __VA_ARGS__)
#define PP_PREPEND_NARG_HELPER2(z, N, ...) \
PP_PREPEND_NARG_HELPER3(z, N, __VA_ARGS__)
#define PP_PREPEND_NARG_HELPER3(z, N, ...) \
PP_PREPEND_NARG_HELPER4_ ## z (N, __VA_ARGS__)
#define PP_PREPEND_NARG_HELPER4_1(N, ...) 0
#define PP_PREPEND_NARG_HELPER4_0(N, ...) N, __VA_ARGS__
The many helpers are again needed to expand the macros to numeric values. Finally test it:
#define my_func(...) func(PP_PREPEND_NARG(__VA_ARGS__))
my_func() // expands to func(0)
my_func(x) // expands to func(1, x)
my_func(x, y) // expands to func(2, x, y)
my_func(x, y, z) // expands to func(3, x, y, z)
Online example:
http://coliru.stacked-crooked.com/a/73b4b6d75d45a1c8
See also:
Please have also a look at the P99 project, which has much more advanced preprocessor solutions, like these.
It is possible to do in GCC using the ##VA_ARGS extension:
#define PP_ARG_N( \
_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, \
_11, _12, _13, _14, _15, _16, _17, _18, _19, _20, \
_21, _22, _23, _24, _25, _26, _27, _28, _29, _30, \
_31, _32, _33, _34, _35, _36, _37, _38, _39, _40, \
_41, _42, _43, _44, _45, _46, _47, _48, _49, _50, \
_51, _52, _53, _54, _55, _56, _57, _58, _59, _60, \
_61, _62, _63, N, ...) N
/* Note 63 is removed */
#define PP_RSEQ_N() \
62, 61, 60, \
59, 58, 57, 56, 55, 54, 53, 52, 51, 50, \
49, 48, 47, 46, 45, 44, 43, 42, 41, 40, \
39, 38, 37, 36, 35, 34, 33, 32, 31, 30, \
29, 28, 27, 26, 25, 24, 23, 22, 21, 20, \
19, 18, 17, 16, 15, 14, 13, 12, 11, 10, \
9, 8, 7, 6, 5, 4, 3, 2, 1, 0
#define PP_NARG_(...) PP_ARG_N(__VA_ARGS__)
/* Note dummy first argument _ and ##__VA_ARGS__ instead of __VA_ARGS__ */
#define PP_NARG(...) PP_NARG_(_, ##__VA_ARGS__, PP_RSEQ_N())
#define my_func(...) func(PP_NARG(__VA_ARGS__), __VA_ARGS__)
Now PP_NARG(a, b, c)
gives 3 and PP_NARG()
gives 0.
Unfortunately I don't see a way to make it work in general.