make custom gridsearchcv code example
Example: How to create/customize your own scorer function in scikit-learn with GridSearch
from sklearn.grid_search import GridSearchCV
from sklearn.metrics import make_scorer
from sklearn.svm import SVR
import numpy as np
rng = np.random.RandomState(1)
def my_custom_loss_func(X_train_scaled, Y_train_scaled):
error, M = 0, 0
for i in range(0, len(Y_train_scaled)):
z = (Y_train_scaled[i] - M)
if X_train_scaled[i] > M and Y_train_scaled[i] > M and (X_train_scaled[i] - Y_train_scaled[i]) > 0:
error_i = (abs(Y_train_scaled[i] - X_train_scaled[i]))**(2*np.exp(z))
if X_train_scaled[i] > M and Y_train_scaled[i] > M and (X_train_scaled[i] - Y_train_scaled[i]) < 0:
error_i = -(abs((Y_train_scaled[i] - X_train_scaled[i]))**(2*np.exp(z)))
if X_train_scaled[i] > M and Y_train_scaled[i] < M:
error_i = -(abs(Y_train_scaled[i] - X_train_scaled[i]))**(2*np.exp(-z))
error += error_i
return error
# Generate sample data
X = 5 * rng.rand(10000, 1)
y = np.sin(X).ravel()
# Add noise to targets
y[::5] += 3 * (0.5 - rng.rand(X.shape[0]/5))
train_size = 100
my_scorer = make_scorer(my_custom_loss_func, greater_is_better=True)
svr = GridSearchCV(SVR(kernel='rbf', gamma=0.1),
scoring=my_scorer,
cv=5,
param_grid={"C": [1e0, 1e1, 1e2, 1e3],
"gamma": np.logspace(-2, 2, 5)})
svr.fit(X[:train_size], y[:train_size])
print svr.best_params_
print svr.score(X[train_size:], y[train_size:])