Making a box around an equation
I see you use amsmath
, which has a nice \boxed
command. The only catch is you should use aligned
instead of align*
inside it:
\documentclass{article}
\usepackage[fleqn]{amsmath}
\thispagestyle{empty}
\setlength\mathindent{1cm}
\linespread{1.3}
\begin{document}
\textbf{\Large Solution.} Here is a summary of what we obtained in class for the case of periodic distribution of eigen-strain
\boxed{\begin{aligned}
&\text{Given the system of PDEs} \\
&C_{ijkl}u_{k,lj} = C_{ijkl} \varepsilon^*_{kl,j} \\
&\text{with a periodic distribution of eigen-strain} \\
&\varepsilon^*_{kl}(\mathbf{x},\boldsymbol{\xi})=\bar{\varepsilon}^*_{kl}(\boldsymbol{\xi})\exp(\mathrm{i}\,\boldsymbol{\xi}\cdot\mathbf{x}) \\
&\text{the general solution can be obtained as} \\
&K_{ik} = C_{ijkl}\xi_l\xi_j \\
&D(\boldsymbol{\xi}) = \epsilon_{mnl} K_{m1} K_{n2} K_{l3} \\
&N_{ij}(\boldsymbol{\xi}) = \frac{1}{2} \epsilon_{ikl}\epsilon_{jmn} K_{km} K_{ln} \\
&u_i(\mathbf{x},\boldsymbol{\xi}) = -\mathrm{i}\,C_{jlmn} \bar{\varepsilon}^*_{mn} \xi_l N_{ij}(\boldsymbol{\xi}) D^{-1}(\boldsymbol{\xi})\exp(\mathrm{i}\,\boldsymbol{\xi}\cdot\mathbf{x}) \\
&\varepsilon_{ij}(\mathbf{x},\boldsymbol{\xi}) = C_{klmn} \bar{\varepsilon}^*_{mn} \xi_l ( \xi_j N_{ik}(\boldsymbol{\xi}) + \xi_i N_{jk}(\boldsymbol{\xi})) D^{-1}(\boldsymbol{\xi})\exp(\mathrm{i}\,\boldsymbol{\xi}\cdot\mathbf{x}) \\
&\sigma_{ij}(\mathbf{x},\boldsymbol{\xi}) = C_{ijkl} ( C_{pqmn} \bar{\varepsilon}^*_{mn} \xi_q \xi_l N_{kp}(\boldsymbol{\xi}) D^{-1}(\boldsymbol{\xi})\exp(\mathrm{i}\,\boldsymbol{\xi}\cdot\mathbf{x})-\varepsilon^*_{kl}(\mathbf{x}))
\end{aligned}}
\end{document}
Here is another solution, which allows for breaking boxed equations across pages. I defined a mathframed
environment, derived from framed
, and use flalign*
to align at the left margin. Using the shortintertext
command from mathtools
simplifies the code:
\documentclass{article}
\usepackage[fleqn]{mathtools}
\usepackage{framed}
\newenvironment{mathframed}{\framed%
\allowdisplaybreaks
\vspace*{-\abovedisplayskip}\noindent}{%
\vspace*{-\dimexpr\baselineskip+\topsep}\endframed}
\linespread{1.3}
\begin{document}
\vspace*{13cm}
\textbf{\Large Solution.} Here is a summary of what we obtained in class for the case of periodic distribution of eigen-strain
\begin{mathframed}
\begin{flalign*}
\shortintertext{Given the system of PDEs}
& C_{ijkl}u_{k,lj} = C_{ijkl} \varepsilon^*_{kl,j} & & \\
\shortintertext{with a periodic distribution of eigen-strain}
&\varepsilon^*_{kl}(\mathbf{x},\boldsymbol{\xi})=\bar{\varepsilon}^*_{kl}(\boldsymbol{\xi})\exp(\mathrm{i}\,\boldsymbol{\xi}\cdot\mathbf{x}) \\
\shortintertext{the general solution can be obtained as}
& K_{ik} = C_{ijkl}\xi_l\xi_j \\
& D(\boldsymbol{\xi}) = \epsilon_{mnl} K_{m1} K_{n2} K_{l3} \\
& N_{ij}(\boldsymbol{\xi}) = \frac{1}{2} \epsilon_{ikl}\epsilon_{jmn} K_{km} K_{ln} \\
& u_i(\mathbf{x},\boldsymbol{\xi}) = -\mathrm{i}\,C_{jlmn} \bar{\varepsilon}^*_{mn} \xi_l N_{ij}(\boldsymbol{\xi}) D^{-1}(\boldsymbol{\xi})\exp(\mathrm{i}\,\boldsymbol{\xi}\cdot\mathbf{x}) \\
& \varepsilon_{ij}(\mathbf{x},\boldsymbol{\xi}) = C_{klmn} \bar{\varepsilon}^*_{mn} \xi_l ( \xi_j N_{ik}(\boldsymbol{\xi}) + \xi_i N_{jk}(\boldsymbol{\xi})) D^{-1}(\boldsymbol{\xi})\exp(\mathrm{i}\,\boldsymbol{\xi}\cdot\mathbf{x}) \\
& \sigma_{ij}(\mathbf{x},\boldsymbol{\xi}) = C_{ijkl} ( C_{pqmn} \bar{\varepsilon}^*_{mn} \xi_q \xi_l N_{kp}(\boldsymbol{\xi}) D^{-1}(\boldsymbol{\xi})\exp(\mathrm{i}\,\boldsymbol{\xi}\cdot\mathbf{x})-\varepsilon^*_{kl}(\mathbf{x}))
\end{flalign*}
\end{mathframed}
\end{document}
You can define your own environment; probably tcolorbox
is better for the purpose, but we can do without it for such a simple situation.
This way the syntax is more natural and you can preserve the fleqn
setting you chose for the whole document.
\documentclass{article}
\usepackage[fleqn]{amsmath}
\usepackage{bm}% recommended
\newenvironment{boxedmaterial}
{\begin{flushleft}% this produces some space around
\hspace*{-\fboxsep}\hspace*{-\fboxrule}%
\begin{lrbox}{\boxedmaterialbox}\begin{minipage}{\textwidth}}
{\end{minipage}\end{lrbox}%
\fbox{\usebox{\boxedmaterialbox}}%
\hspace*{-\fboxsep}\hspace*{-\fboxrule}\hspace*{0pt}%
\end{flushleft}}
\newsavebox{\boxedmaterialbox}
\setlength\mathindent{1cm}
\linespread{1.3}
\begin{document}
\textbf{Solution.} Here is a summary of what we obtained in class
for the case of periodic distribution of eigen-strain
\begin{boxedmaterial}
Given the system of PDEs
\begin{equation*}
C_{ijkl}u_{k,lj} = C_{ijkl} \varepsilon^*_{kl,j}
\end{equation*}
with a periodic distribution of eigen-strain
\begin{equation*}
\varepsilon^*_{kl}(\mathbf{x},\bm{\xi})=
\bar{\varepsilon}^*_{kl}(\bm{\xi})\exp(\mathrm{i}\,\bm{\xi}\cdot\mathbf{x})
\end{equation*}
the general solution can be obtained as
\begin{align*}
K_{ik} &= C_{ijkl}\xi_l\xi_j \\
D(\bm{\xi}) &= \epsilon_{mnl} K_{m1} K_{n2} K_{l3} \\
N_{ij}(\bm{\xi}) &= \frac{1}{2} \epsilon_{ikl}\epsilon_{jmn} K_{km} K_{ln} \\
u_i(\mathbf{x},\bm{\xi}) &=
-\mathrm{i}\,C_{jlmn} \bar{\varepsilon}^*_{mn} \xi_l N_{ij}(\bm{\xi})
D^{-1}(\bm{\xi})\exp(\mathrm{i}\,\bm{\xi}\cdot\mathbf{x}) \\
\varepsilon_{ij}(\mathbf{x},\bm{\xi}) &=
C_{klmn} \bar{\varepsilon}^*_{mn} \xi_l ( \xi_j N_{ik}(\bm{\xi}) +
\xi_i N_{jk}(\bm{\xi})) D^{-1}(\bm{\xi})\exp(\mathrm{i}\,\bm{\xi}\cdot\mathbf{x}) \\
\sigma_{ij}(\mathbf{x},\bm{\xi}) &=
C_{ijkl} ( C_{pqmn} \bar{\varepsilon}^*_{mn} \xi_q \xi_l N_{kp}(\bm{\xi})
D^{-1}(\bm{\xi})\exp(\mathrm{i}\,\bm{\xi}\cdot\mathbf{x})-\varepsilon^*_{kl}(\mathbf{x}))
\end{align*}
\end{boxedmaterial}
\end{document}
The bm
package with its \bm
command is superior to the \boldsymbol
feature provided by amsmath
.