matplotlib surface plot hides scatter points which should be in front

OK, so as per the comment by Mr T above, there doesn't seem to be a direct method of dealing with this. There is however, a workaround for what I'm trying to do (highlight specific points on the surface). Using the matplotlib.patches and mpl_toolkits.mplot3d.art3d modules, it is possible to plot a circle on the graph at the appropriate point, and this appears to be unaffected by the same issue.

an example of "there I fixed it"

The modified code is:

import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D, art3d
from matplotlib.patches import Circle
import numpy as np

df = pd.DataFrame({10: {10: 1,15: 1,20: 1,25: 1,30: 1,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   15: {10: 4,15: 1,20: 1,25: 1,30: 1,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   20: {10: 6,15: 3,20: 1,25: 1,30: 1,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   25: {10: 7,15: 5,20: 3,25: 1,30: 1,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   30: {10: 9,15: 6,20: 4,25: 3,30: 1,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   35: {10: 10,15: 7,20: 5,25: 4,30: 2,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   40: {10: 11,15: 8,20: 6,25: 4,30: 3,35: 2,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   45: {10: 12,15: 9,20: 7,25: 5,30: 4,35: 3,40: 2,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   50: {10: 13,15: 9,20: 7,25: 6,30: 5,35: 4,40: 3,45: 2,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   55: {10: 14,15: 10,20: 8,25: 7,30: 5,35: 4,40: 3,45: 3,50: 2,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   60: {10: 15,15: 11,20: 9,25: 7,30: 6,35: 5,40: 4,45: 3,50: 3,55: 2,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   65: {10: 16,15: 12,20: 9,25: 8,30: 6,35: 5,40: 5,45: 4,50: 3,55: 2,60: 2,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   70: {10: 17,15: 12,20: 10,25: 8,30: 7,35: 6,40: 5,45: 4,50: 4,55: 3,60: 2,65: 2,70: 1,75: 1,80: 1,85: 1,90: 1},
                   75: {10: 18,15: 13,20: 10,25: 9,30: 7,35: 6,40: 5,45: 5,50: 4,55: 3,60: 3,65: 2,70: 2,75: 1,80: 1,85: 1,90: 1},
                   80: {10: 19,15: 14,20: 11,25: 9,30: 8,35: 7,40: 6,45: 5,50: 4,55: 4,60: 3,65: 3,70: 2,75: 2,80: 1,85: 1,90: 1},
                   85: {10: 21,15: 14,20: 11,25: 10,30: 8,35: 7,40: 6,45: 6,50: 5,55: 4,60: 4,65: 3,70: 3,75: 2,80: 2,85: 1,90: 1},
                   90: {10: 23,15: 15,20: 12,25: 10,30: 9,35: 8,40: 7,45: 6,50: 5,55: 5,60: 4,65: 3,70: 3,75: 3,80: 2,85: 2,90: 1}})




xv, yv = np.meshgrid(df.index, df.columns)
ma = np.nanmax(df.values)
norm = matplotlib.colors.Normalize(vmin = 0, vmax = ma, clip = True)

fig = plt.figure(1)
ax = Axes3D(fig)
surf = ax.plot_surface(yv,xv,df, cmap='viridis_r', linewidth=0.3,
                       alpha = 0.8, edgecolor = 'k', norm=norm)

p = Circle((25, 35), 3, ec='k', fc="none")
ax.add_patch(p)
art3d.pathpatch_2d_to_3d(p, z=4, zdir="z")

plt.show()

A useful workaround is to use the option computed_zorder=False (added in Feb 2021, see doc), and to plot the different elements in the desired order. The only caveat is that it requires knowing which points are below the surface, and which points are above.

Et Voilà !

import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np

df = pd.DataFrame({10: {10: 1,15: 1,20: 1,25: 1,30: 1,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   15: {10: 4,15: 1,20: 1,25: 1,30: 1,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   20: {10: 6,15: 3,20: 1,25: 1,30: 1,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   25: {10: 7,15: 5,20: 3,25: 1,30: 1,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   30: {10: 9,15: 6,20: 4,25: 3,30: 1,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   35: {10: 10,15: 7,20: 5,25: 4,30: 2,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   40: {10: 11,15: 8,20: 6,25: 4,30: 3,35: 2,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   45: {10: 12,15: 9,20: 7,25: 5,30: 4,35: 3,40: 2,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   50: {10: 13,15: 9,20: 7,25: 6,30: 5,35: 4,40: 3,45: 2,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   55: {10: 14,15: 10,20: 8,25: 7,30: 5,35: 4,40: 3,45: 3,50: 2,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   60: {10: 15,15: 11,20: 9,25: 7,30: 6,35: 5,40: 4,45: 3,50: 3,55: 2,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   65: {10: 16,15: 12,20: 9,25: 8,30: 6,35: 5,40: 5,45: 4,50: 3,55: 2,60: 2,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   70: {10: 17,15: 12,20: 10,25: 8,30: 7,35: 6,40: 5,45: 4,50: 4,55: 3,60: 2,65: 2,70: 1,75: 1,80: 1,85: 1,90: 1},
                   75: {10: 18,15: 13,20: 10,25: 9,30: 7,35: 6,40: 5,45: 5,50: 4,55: 3,60: 3,65: 2,70: 2,75: 1,80: 1,85: 1,90: 1},
                   80: {10: 19,15: 14,20: 11,25: 9,30: 8,35: 7,40: 6,45: 5,50: 4,55: 4,60: 3,65: 3,70: 2,75: 2,80: 1,85: 1,90: 1},
                   85: {10: 21,15: 14,20: 11,25: 10,30: 8,35: 7,40: 6,45: 6,50: 5,55: 4,60: 4,65: 3,70: 3,75: 2,80: 2,85: 1,90: 1},
                   90: {10: 23,15: 15,20: 12,25: 10,30: 9,35: 8,40: 7,45: 6,50: 5,55: 5,60: 4,65: 3,70: 3,75: 3,80: 2,85: 2,90: 1}})




xv, yv = np.meshgrid(df.index, df.columns)
ma = np.nanmax(df.values)
norm = matplotlib.colors.Normalize(vmin = 0, vmax = ma, clip = True)

fig = plt.figure(1)
ax = Axes3D(fig, computed_zorder=False)

ax.scatter(10,70,4, c='k', depthshade=False, alpha = 1, s=100)
surf = ax.plot_surface(yv,xv,df, cmap='viridis_r', linewidth=0.3,
                       alpha = 0.8, edgecolor = 'k', norm=norm)
ax.scatter(25,35,4, c='k', depthshade=False, alpha = 1, s=100)

plt.show()

Run into this problem in 2020 and do not want to switch to another package. This solution is a modification of Will's answer above. Basically draw the circle in three axis to make it more like a dot. Also use ellipse to adjust for axis ratios. Works better if you set the radius smaller and choose a face color:

enter image description here

   def add_point(ax, x, y, z, fc = None, ec = None, radius = 0.005):
       xy_len, z_len = ax.get_figure().get_size_inches()
       axis_length = [x[1] - x[0] for x in [ax.get_xbound(), ax.get_ybound(), ax.get_zbound()]]
       axis_rotation =  {'z': ((x, y, z), axis_length[1]/axis_length[0]),
                         'y': ((x, z, y), axis_length[2]/axis_length[0]*xy_len/z_len),
                         'x': ((y, z, x), axis_length[2]/axis_length[1]*xy_len/z_len)}
       for a, ((x0, y0, z0), ratio) in axis_rotation.items():
           p = Ellipse((x0, y0), width = radius, height = radius*ratio, fc=fc, ec=ec)
           ax.add_patch(p)
           art3d.pathpatch_2d_to_3d(p, z=z0, zdir=a)

where radius is the radius of the "circle", fc is the face color, ec is the edge color.

The modified code:

import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D, art3d
from matplotlib.patches import Circle, Ellipse
import numpy as np

df = pd.DataFrame({10: {10: 1,15: 1,20: 1,25: 1,30: 1,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   15: {10: 4,15: 1,20: 1,25: 1,30: 1,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   20: {10: 6,15: 3,20: 1,25: 1,30: 1,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   25: {10: 7,15: 5,20: 3,25: 1,30: 1,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   30: {10: 9,15: 6,20: 4,25: 3,30: 1,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   35: {10: 10,15: 7,20: 5,25: 4,30: 2,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   40: {10: 11,15: 8,20: 6,25: 4,30: 3,35: 2,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   45: {10: 12,15: 9,20: 7,25: 5,30: 4,35: 3,40: 2,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   50: {10: 13,15: 9,20: 7,25: 6,30: 5,35: 4,40: 3,45: 2,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   55: {10: 14,15: 10,20: 8,25: 7,30: 5,35: 4,40: 3,45: 3,50: 2,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   60: {10: 15,15: 11,20: 9,25: 7,30: 6,35: 5,40: 4,45: 3,50: 3,55: 2,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   65: {10: 16,15: 12,20: 9,25: 8,30: 6,35: 5,40: 5,45: 4,50: 3,55: 2,60: 2,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1},
                   70: {10: 17,15: 12,20: 10,25: 8,30: 7,35: 6,40: 5,45: 4,50: 4,55: 3,60: 2,65: 2,70: 1,75: 1,80: 1,85: 1,90: 1},
                   75: {10: 18,15: 13,20: 10,25: 9,30: 7,35: 6,40: 5,45: 5,50: 4,55: 3,60: 3,65: 2,70: 2,75: 1,80: 1,85: 1,90: 1},
                   80: {10: 19,15: 14,20: 11,25: 9,30: 8,35: 7,40: 6,45: 5,50: 4,55: 4,60: 3,65: 3,70: 2,75: 2,80: 1,85: 1,90: 1},
                   85: {10: 21,15: 14,20: 11,25: 10,30: 8,35: 7,40: 6,45: 6,50: 5,55: 4,60: 4,65: 3,70: 3,75: 2,80: 2,85: 1,90: 1},
                   90: {10: 23,15: 15,20: 12,25: 10,30: 9,35: 8,40: 7,45: 6,50: 5,55: 5,60: 4,65: 3,70: 3,75: 3,80: 2,85: 2,90: 1}})




xv, yv = np.meshgrid(df.index, df.columns)
ma = np.nanmax(df.values)
norm = matplotlib.colors.Normalize(vmin = 0, vmax = ma, clip = True)

fig = plt.figure(1)
ax = Axes3D(fig)
surf = ax.plot_surface(yv,xv,df, cmap='viridis_r', linewidth=0.3,
                       alpha = 0.8, edgecolor = 'k', norm=norm)

add_point(ax, 25, 35, 0, radius=1)
add_point(ax, 25, 35, 2, radius=2)
add_point(ax, 25, 35, 4, radius=3)

plt.show()