maximum of monic polynomial on unit circle is 1 implies $p(z)=z^n$
Let $p(z)=z^n+a_{n-1}z^{n-1}+\cdots+a_0$.
Then, $\forall z\neq 0:p(\frac{1}{z})=z^{-n}+a_{n-1}z^{-n+1}+\cdots+a_0$.
Let $q(z)=z^n\cdot p(\frac{1}{z})=1+a_{n-1}z+\cdots+a_0z^n$.
Observe that $$\max\limits_{|z|=1}|q(z)|=\max\limits_{|z|=1}|z^n\cdot p(1/z)|=\max\limits_{|z|=1}|p(1/z)|=\max\limits_{|z|=1}|p(z)|$$
The last step is due to $\{z\in\mathbb{C}:|1/z|=1\}=\{z\in\mathbb{C}:|z|=1\}$.
Now, $q(0)=1$, so $|q(0)|=1$ and, by the maximum principle, $\max\limits_{|z|=1}|q(z)|\geq1$.
Finally, $\max\limits_{|z|=1}|p(z)|\geq1$.
Now, if $p(z)=z^n$ then clearly $\max\limits_{|z|=1}|p(z)|=1$.
Suppose that $\max\limits_{|z|=1}|p(z)|=1$, then also $\max\limits_{|z|=1}|q(z)|=1$.
Again, by the maximum principle, we have that $q\equiv 1$.
Therefore, $\forall z\neq 0:p(1/z)=1/z^n$, so $\forall z\neq 0:p(z)=z^n$.
Finally from continuity $p(0)=0$ and we get that $\forall z\in\mathbb{C}:p(z)=z^n$.