Mean value of each element in multiple lists - Python
>>> a = [2,5,1,9]
>>> b = [4,9,5,10]
>>> [(g + h) / 2 for g, h in zip(a, b)]
[3.0, 7.0, 3.0, 9.5]
Referring to your title of the question, you can achieve this simply with:
import numpy as np
multiple_lists = [[2,5,1,9], [4,9,5,10]]
arrays = [np.array(x) for x in multiple_lists]
[np.mean(k) for k in zip(*arrays)]
Above script will handle multiple lists not just two. If you want to compare the performance of two approaches try:
%%time
import random
import statistics
random.seed(33)
multiple_list = []
for seed in random.sample(range(100), 100):
random.seed(seed)
multiple_list.append(random.sample(range(100), 100))
result = [statistics.mean(k) for k in zip(*multiple_list)]
or alternatively:
%%time
import random
import numpy as np
random.seed(33)
multiple_list = []
for seed in random.sample(range(100), 100):
random.seed(seed)
multiple_list.append(np.array(random.sample(range(100), 100)))
result = [np.mean(k) for k in zip(*multiple_list)]
To my experience numpy approach is much faster.
An alternate to using a list and for loop would be to use a numpy array.
import numpy as np
# an array can perform element wise calculations unlike lists.
a, b = np.array([2,5,1,9]), np.array([4,9,5,10])
mean = (a + b)/2; print(mean)
>>>[ 3. 7. 3. 9.5]
What you want is the mean of two arrays (or vectors in math).
Since Python 3.4, there is a statistics module which provides a mean()
function:
statistics.mean(data)
Return the sample arithmetic mean of data, a sequence or iterator of real-valued numbers.
You can use it like this:
import statistics
a = [2, 5, 1, 9]
b = [4, 9, 5, 10]
result = [statistics.mean(k) for k in zip(a, b)]
# -> [3.0, 7.0, 3.0, 9.5]
notice: this solution can be use for more than two arrays, because zip()
can have multiple parameters.