Merging results from model.predict() with original pandas DataFrame?
I have the same problem (almost)
I fixed it this way
...
.
.
.
X_train, X_test, y_train, y_test = train_test_split(df,df_class, train_size = 0.8)
model = DecisionTreeClassifier()
model.fit(X_train, y_train)
y_hats = model.predict(X_test)
y_hats = pd.DataFrame(y_hats)
df_out = X_test.reset_index()
df_out["Actual"] = y_test.reset_index()["Columns_Name"]
df_out["Prediction"] = y_hats.reset_index()[0]
y_test['preds'] = y_hats
df_out = pd.merge(df,y_test[['preds']],how = 'left',left_index = True, right_index = True)
your y_hats length will only be the length on the test data (20%) because you predicted on X_test. Once your model is validated and you're happy with the test predictions (by examining the accuracy of your model on the X_test predictions compared to the X_test true values), you should rerun the predict on the full dataset (X). Add these two lines to the bottom:
y_hats2 = model.predict(X)
df['y_hats'] = y_hats2
EDIT per your comment, here is an updated result the returns the dataset with the prediction appended where they were in the test datset
from sklearn.datasets import load_iris
from sklearn.cross_validation import train_test_split
from sklearn.tree import DecisionTreeClassifier
import pandas as pd
import numpy as np
data = load_iris()
# bear with me for the next few steps... I'm trying to walk you through
# how my data object landscape looks... i.e. how I get from raw data
# to matrices with the actual data I have, not the iris dataset
# put feature matrix into columnar format in dataframe
df = pd.DataFrame(data = data.data)
# add outcome variable
df_class = pd.DataFrame(data = data.target)
# finally, split into train-test
X_train, X_test, y_train, y_test = train_test_split(df,df_class, train_size = 0.8)
model = DecisionTreeClassifier()
model.fit(X_train, y_train)
# I've got my predictions now
y_hats = model.predict(X_test)
y_test['preds'] = y_hats
df_out = pd.merge(df,y_test[['preds']],how = 'left',left_index = True, right_index = True)