Move non-empty cells to the left in pandas DataFrame
Here's what I did:
I unstacked your dataframe into a longer format, then grouped by the name column. Within each group, I drop the NaNs, but then reindex to the full h1 thought h4 set, thus re-creating your NaNs to the right.
from io import StringIO
import pandas
def defragment(x):
values = x.dropna().values
return pandas.Series(values, index=df.columns[:len(values)])
datastring = StringIO("""\
Name h1 h2 h3 h4
A 1 nan 2 3
B nan nan 1 3
C 1 3 2 nan""")
df = pandas.read_table(datastring, sep='\s+').set_index('Name')
long_index = pandas.MultiIndex.from_product([df.index, df.columns])
print(
df.stack()
.groupby(level='Name')
.apply(defragment)
.reindex(long_index)
.unstack()
)
And so I get:
h1 h2 h3 h4
A 1 2 3 NaN
B 1 3 NaN NaN
C 1 3 2 NaN
First, make function.
def squeeze_nan(x):
original_columns = x.index.tolist()
squeezed = x.dropna()
squeezed.index = [original_columns[n] for n in range(squeezed.count())]
return squeezed.reindex(original_columns, fill_value=np.nan)
Second, apply the function.
df.apply(squeeze_nan, axis=1)
You can also try axis=0 and .[::-1] to squeeze nan to any direction.
[EDIT]
@Mxracer888 you want this?
def squeeze_nan(x, hold):
if x.name not in hold:
original_columns = x.index.tolist()
squeezed = x.dropna()
squeezed.index = [original_columns[n] for n in range(squeezed.count())]
return squeezed.reindex(original_columns, fill_value=np.nan)
else:
return x
df.apply(lambda x: squeeze_nan(x, ['B']), axis=1)