Moving a CLLocation by x meters

Improved swift solution to Peters answer. Only correction is the bearing should be radian while calculation has been made.

 func locationWithBearing(bearing:Double, distanceMeters:Double, origin:CLLocationCoordinate2D) -> CLLocationCoordinate2D {
    let distRadians = distanceMeters / (6372797.6)

    var rbearing = bearing * M_PI / 180.0

    let lat1 = origin.latitude * M_PI / 180
    let lon1 = origin.longitude * M_PI / 180

    let lat2 = asin(sin(lat1) * cos(distRadians) + cos(lat1) * sin(distRadians) * cos(rbearing))
    let lon2 = lon1 + atan2(sin(rbearing) * sin(distRadians) * cos(lat1), cos(distRadians) - sin(lat1) * sin(lat2))

    return CLLocationCoordinate2D(latitude: lat2 * 180 / M_PI, longitude: lon2 * 180 / M_PI)
}

A conversion to Swift, taken from this answer:

func locationWithBearing(bearingRadians:Double, distanceMeters:Double, origin:CLLocationCoordinate2D) -> CLLocationCoordinate2D {
    let distRadians = distanceMeters / (6372797.6) // earth radius in meters

    let lat1 = origin.latitude * M_PI / 180
    let lon1 = origin.longitude * M_PI / 180

    let lat2 = asin(sin(lat1) * cos(distRadians) + cos(lat1) * sin(distRadians) * cos(bearingRadians))
    let lon2 = lon1 + atan2(sin(bearingRadians) * sin(distRadians) * cos(lat1), cos(distRadians) - sin(lat1) * sin(lat2))

    return CLLocationCoordinate2D(latitude: lat2 * 180 / M_PI, longitude: lon2 * 180 / M_PI)
}

Morgan Chen wrote this:

All of the math in this method is done in radians. At the start of the method, lon1 and lat1 are converted to radians for this purpose as well. Bearing is in radians too. Keep in mind this method takes into account the curvature of the Earth, which you don't really need to do for small distances.

My comments (Mar. 25, 2021):

The calculation used in this method is called solving the "direct geodesic problem", and this is discussed in C.F.F. Karney's article "Algorithms for geodesics", 2012. The code given above uses a technique that is less accurate than the algorithms presented in Karney's article.