Moving variance in R
rollapply
in the zoo
package takes an arbitrary function. It's different from filter
in that it excludes the NA
s by default.
That being said, though, there's not much sense in loading a package for a function that's so simple to roll yourself (pun intended).
Here's one that's right aligned:
my.rollapply <- function(vec, width, FUN)
sapply(seq_along(vec),
function(i) if (i < width) NA else FUN(vec[i:(i-width+1)]))
set.seed(1)
vec <- sample(1:50, 50)
my.rollapply(vec, 3, sd)
[1] NA NA 7.094599 12.124356 16.522712 18.502252 18.193405 7.234178 8.144528
[10] 14.468356 12.489996 3.055050 20.808652 19.467922 18.009257 18.248288 15.695010 7.505553
[19] 10.066446 11.846237 17.156146 6.557439 5.291503 23.629078 22.590558 21.197484 22.810816
[28] 24.433583 19.502137 16.165808 11.503623 12.288206 9.539392 13.051181 13.527749 19.974984
[37] 19.756855 17.616280 19.347696 18.248288 15.176737 6.082763 10.000000 10.016653 4.509250
[46] 2.645751 1.527525 5.291503 10.598742 6.557439
# rollapply output for comparison
rollapply(vec, width=3, sd, fill=NA, align='right')
[1] NA NA 7.094599 12.124356 16.522712 18.502252 18.193405 7.234178 8.144528
[10] 14.468356 12.489996 3.055050 20.808652 19.467922 18.009257 18.248288 15.695010 7.505553
[19] 10.066446 11.846237 17.156146 6.557439 5.291503 23.629078 22.590558 21.197484 22.810816
[28] 24.433583 19.502137 16.165808 11.503623 12.288206 9.539392 13.051181 13.527749 19.974984
[37] 19.756855 17.616280 19.347696 18.248288 15.176737 6.082763 10.000000 10.016653 4.509250
[46] 2.645751 1.527525 5.291503 10.598742 6.557439
Consider the zoo package. For example filter()
gives:
> filter(1:100, rep(1/3,3))
Time Series:
Start = 1
End = 100
Frequency = 1
[1] NA 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
[26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
[51] 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
[76] 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 NA
whereas rollmean()
in zoo gives:
> rollmean(1:100, k = 3, na.pad = TRUE)
[1] NA 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
[26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
[51] 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
[76] 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 NA
which is the same (for a 3 point moving average in this example).
Whilst zoo doesn't have a rollsd()
or rollvar()
it does have rollapply()
, which works like the apply()
functions to apply any R function to the specified window.
> rollapply(1:100, width = 3, FUN = sd, na.pad = TRUE)
[1] NA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[26] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[51] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[76] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 NA
Warning message:
In rollapply.zoo(zoo(data), ...) : na.pad argument is deprecated
or on something more interesting:
> rollapply(vec, width = 3, FUN = sd, na.pad = TRUE)
[1] NA 0.3655067 0.8472871 0.5660495 0.3491970 0.4732417 0.9236859
[8] 0.8075226 1.8725851 1.1930784 0.6329325 1.1412416 0.8430772 0.5808005
[15] 0.3838545 1.1738170 1.1655400 1.3241700 0.6876834 0.1534157 0.4858477
[22] 0.9843506 0.6002713 0.6897541 2.0619563 2.5675788 6.3522039 6.0066864
[29] 6.2618432 5.1704866 2.1360853 2.5602557 1.0408528 1.0316396 4.9441628
[36] 5.0319314 5.7589716 3.2425000 4.8788158 2.0847286 4.5199291 2.5323486
[43] 2.1987149 1.8393000 1.2278639 1.5998965 1.5341485 4.4287108 4.4159166
[50] 4.3224546 3.6959067 4.9826264 5.3134044 8.4084322 9.1249234 7.5506725
[57] 3.8499136 3.9680487 5.6362296 4.9124095 4.3452706 4.0227141 4.5867559
[64] 4.7350394 4.3203807 4.4506799 7.2759499 7.6536424 7.8487654 2.0905576
[71] 4.0056880 5.6209853 1.5551659 1.3615268 2.8469458 2.8323588 1.9848578
[78] 1.1201124 1.4248380 1.7802571 1.4281773 2.5481935 1.8554451 1.0925410
[85] 2.1823722 2.2788755 2.4205378 2.0733741 0.7462248 1.3873578 1.4265948
[92] 0.7212619 0.7425993 1.0696432 2.4520585 3.0555819 3.1000885 1.0945292
[99] 0.3726928 NA
Warning message:
In rollapply.zoo(zoo(data), ...) : na.pad argument is deprecated
You can get rid of the warning by using the fill = NA
argument, as in
> rollapply(vec, width = 3, FUN = sd, fill = NA)
The TTR package has runSD
among others:
> library(TTR)
> ls("package:TTR", pattern="run*")
[1] "runCor" "runCov" "runMAD" "runMax" "runMean"
[6] "runMedian" "runMin" "runSD" "runSum" "runVar"
runSD
will be much faster than rollapply
because it avoids making many R function calls. For example:
rzoo <- function(x,n) rollapplyr(x, n, sd, fill=NA)
rttr <- function(x,n) runSD(x, n)
library(rbenchmark)
set.seed(21)
x <- rnorm(1e4)
all.equal(rzoo(x,250), rttr(x,250))
# [1] TRUE
benchmark(rzoo(x,250), rttr(x,250))[,1:6]
# test replications elapsed relative user.self sys.self
# 2 rttr(x, 250) 100 0.58 1.000 0.58 0.00
# 1 rzoo(x, 250) 100 54.53 94.017 53.85 0.06