Naturally sorting Pandas DataFrame

Now that pandas has support for key in both sort_values and sort_index you should now refer to this other answer and send all upvotes there as it is now the correct answer.

I will leave my answer here for people stuck on old pandas versions, or as a historical curiosity.


The accepted answer answers the question being asked. I'd like to also add how to use natsort on columns in a DataFrame, since that will be the next question asked.

In [1]: from pandas import DataFrame

In [2]: from natsort import natsorted, index_natsorted, order_by_index

In [3]: df = DataFrame({'a': ['a5', 'a1', 'a10', 'a2', 'a12'], 'b': ['b1', 'b1', 'b2', 'b2', 'b1']}, index=['0hr', '128hr', '72hr', '48hr', '96hr'])

In [4]: df
Out[4]: 
         a   b
0hr     a5  b1
128hr   a1  b1
72hr   a10  b2
48hr    a2  b2
96hr   a12  b1

As the accepted answer shows, sorting by the index is fairly straightforward:

In [5]: df.reindex(index=natsorted(df.index))
Out[5]: 
         a   b
0hr     a5  b1
48hr    a2  b2
72hr   a10  b2
96hr   a12  b1
128hr   a1  b1

If you want to sort on a column in the same manner, you need to sort the index by the order that the desired column was reordered. natsort provides the convenience functions index_natsorted and order_by_index to do just that.

In [6]: df.reindex(index=order_by_index(df.index, index_natsorted(df.a)))
Out[6]: 
         a   b
128hr   a1  b1
48hr    a2  b2
0hr     a5  b1
72hr   a10  b2
96hr   a12  b1

In [7]: df.reindex(index=order_by_index(df.index, index_natsorted(df.b)))
Out[7]: 
         a   b
0hr     a5  b1
128hr   a1  b1
96hr   a12  b1
72hr   a10  b2
48hr    a2  b2

If you want to reorder by an arbitrary number of columns (or a column and the index), you can use zip (or itertools.izip on Python2) to specify sorting on multiple columns. The first column given will be the primary sorting column, then secondary, then tertiary, etc...

In [8]: df.reindex(index=order_by_index(df.index, index_natsorted(zip(df.b, df.a))))
Out[8]: 
         a   b
128hr   a1  b1
0hr     a5  b1
96hr   a12  b1
48hr    a2  b2
72hr   a10  b2

In [9]: df.reindex(index=order_by_index(df.index, index_natsorted(zip(df.b, df.index))))
Out[9]: 
         a   b
0hr     a5  b1
96hr   a12  b1
128hr   a1  b1
48hr    a2  b2
72hr   a10  b2

Here is an alternate method using Categorical objects that I have been told by the pandas devs is the "proper" way to do this. This requires (as far as I can see) pandas >= 0.16.0. Currently, it only works on columns, but apparently in pandas >= 0.17.0 they will add CategoricalIndex which will allow this method to be used on an index.

In [1]: from pandas import DataFrame

In [2]: from natsort import natsorted

In [3]: df = DataFrame({'a': ['a5', 'a1', 'a10', 'a2', 'a12'], 'b': ['b1', 'b1', 'b2', 'b2', 'b1']}, index=['0hr', '128hr', '72hr', '48hr', '96hr'])

In [4]: df.a = df.a.astype('category')

In [5]: df.a.cat.reorder_categories(natsorted(df.a), inplace=True, ordered=True)

In [6]: df.b = df.b.astype('category')

In [8]: df.b.cat.reorder_categories(natsorted(set(df.b)), inplace=True, ordered=True)

In [9]: df.sort('a')
Out[9]: 
         a   b
128hr   a1  b1
48hr    a2  b2
0hr     a5  b1
72hr   a10  b2
96hr   a12  b1

In [10]: df.sort('b')
Out[10]: 
         a   b
0hr     a5  b1
128hr   a1  b1
96hr   a12  b1
72hr   a10  b2
48hr    a2  b2

In [11]: df.sort(['b', 'a'])
Out[11]: 
         a   b
128hr   a1  b1
0hr     a5  b1
96hr   a12  b1
48hr    a2  b2
72hr   a10  b2

The Categorical object lets you define a sorting order for the DataFrame to use. The elements given when calling reorder_categories must be unique, hence the call to set for column "b".

I leave it to the user to decide if this is better than the reindex method or not, since it requires you to sort the column data independently before sorting within the DataFrame (although I imagine that second sort is rather efficient).


Full disclosure, I am the natsort author.


Using sort_values for pandas >= 1.1.0

With the new key argument in DataFrame.sort_values, since pandas 1.1.0, we can directly sort a column without setting it as an index using natsort.natsort_keygen:

df = pd.DataFrame({
    "time": ['0hr', '128hr', '72hr', '48hr', '96hr'],
    "value": [10, 20, 30, 40, 50]
})

    time  value
0    0hr     10
1  128hr     20
2   72hr     30
3   48hr     40
4   96hr     50
from natsort import natsort_keygen

df.sort_values(
    by="time",
    key=natsort_keygen()
)

    time  value
0    0hr     10
3   48hr     40
2   72hr     30
4   96hr     50
1  128hr     20

If you want to sort the df, just sort the index or the data and assign directly to the index of the df rather than trying to pass the df as an arg as that yields an empty list:

In [7]:

df.index = natsorted(a)
df.index
Out[7]:
Index(['0hr', '48hr', '72hr', '96hr', '128hr'], dtype='object')

Note that df.index = natsorted(df.index) also works

if you pass the df as an arg it yields an empty list, in this case because the df is empty (has no columns), otherwise it will return the columns sorted which is not what you want:

In [10]:

natsorted(df)
Out[10]:
[]

EDIT

If you want to sort the index so that the data is reordered along with the index then use reindex:

In [13]:

df=pd.DataFrame(index=a, data=np.arange(5))
df
Out[13]:
       0
0hr    0
128hr  1
72hr   2
48hr   3
96hr   4
In [14]:

df = df*2
df
Out[14]:
       0
0hr    0
128hr  2
72hr   4
48hr   6
96hr   8
In [15]:

df.reindex(index=natsorted(df.index))
Out[15]:
       0
0hr    0
48hr   6
72hr   4
96hr   8
128hr  2

Note that you have to assign the result of reindex to either a new df or to itself, it does not accept the inplace param.