Neural Networks With Google TensorFlow code example

Example: tenser flow

def my_op(tensor_in, other_tensor_in, my_param, other_param=0.5,
          output_collections=(), name=None):
  """My operation that adds two tensors with given coefficients.

  Args:
    tensor_in: `Tensor`, input tensor.
    other_tensor_in: `Tensor`, same shape as `tensor_in`, other input tensor.
    my_param: `float`, coefficient for `tensor_in`.
    other_param: `float`, coefficient for `other_tensor_in`.
    output_collections: `tuple` of `string`s, name of the collection to
                        collect result of this op.
    name: `string`, name of the operation.

  Returns:
    `Tensor` of same shape as `tensor_in`, sum of input values with coefficients.

  Example:
    >>> my_op([1., 2.], [3., 4.], my_param=0.5, other_param=0.6,
              output_collections=['MY_OPS'], name='add_t1t2')
    [2.3, 3.4]
  """
  with tf.name_scope(name or "my_op"):
    tensor_in = tf.convert_to_tensor(tensor_in)
    other_tensor_in = tf.convert_to_tensor(other_tensor_in)
    result = my_param * tensor_in + other_param * other_tensor_in
    tf.add_to_collection(output_collections, result)
    return result