Null values from a csv on Scala and Apache Spark
The reason for the null
values is because the default "mode" for the csv API is PERMISSIVE
:
mode (default PERMISSIVE): allows a mode for dealing with corrupt records during parsing. It supports the following case-insensitive modes.
- PERMISSIVE : sets other fields to null when it meets a corrupted record, and puts the malformed string into a field configured by columnNameOfCorruptRecord. To keep corrupt records, an user can set a string type field named columnNameOfCorruptRecord in an user-defined schema. If a schema does not have the field, it drops corrupt records during parsing. When a length of parsed CSV tokens is shorter than an expected length of a schema, it sets null for extra fields.
- DROPMALFORMED : ignores the whole corrupted records.
- FAILFAST : throws an exception when it meets corrupted records
csv API
So if we load without a schema we see the following:
scala> val df = spark.read.format("com.databricks.spark.csv").option("header","true").load("data.csv")
df: org.apache.spark.sql.DataFrame = [Rank: string, Grade: string ... 4 more fields]
scala> df.show
+----+-----+--------------------+------------+-----------+-----------+
|Rank|Grade| Channelname|VideoUploads|Subscribers| Videoviews|
+----+-----+--------------------+------------+-----------+-----------+
| 1st| A++ | Zee TV| 82757| 18752951|20869786591|
| 2nd| A++ | T-Series| 12661| 61196302|47548839843|
| 3rd| A++ |Cocomelon - Nurse...| 373| 19238251| 9793305082|
| 4th| A++ | SET India| 27323| 31180559|22675948293|
| 5th| A++ | WWE| 36756| 32852346|26273668433|
| 6th| A++ | Movieclips| 30243| 17149705|16618094724|
| 7th| A++ | netd müzik| 8500| 11373567|23898730764|
| 8th| A++ |ABS-CBN Entertain...| 100147| 12149206|17202609850|
| 9th| A++ | Ryan ToysReview| 1140| 16082927|24518098041|
|10th| A++ | Zee Marathi| 74607| 2841811| 2591830307|
|11th| A+ | 5-Minute Crafts| 2085| 33492951| 8587520379|
|12th| A+ | Canal KondZilla| 822| 39409726|19291034467|
|13th| A+ | Like Nastya Vlog| 150| 7662886| 2540099931|
|14th| A+ | Ozuna| 50| 18824912| 8727783225|
|15th| A+ | Wave Music| 16119| 15899764|10989179147|
|16th| A+ | Ch3Thailand| 49239| 11569723| 9388600275|
|17th| A+ | WORLDSTARHIPHOP| 4778| 15830098|11102158475|
|18th| A+ | Vlad and Nikita| 53| -- | 1428274554|
+----+-----+--------------------+------------+-----------+-----------+
If we apply your schema we see this:
scala> val schema = StructType(Array(StructField("Rank",StringType,true),StructField("Grade", StringType, true),StructField("Channelname",StringType,true),StructField("Video Uploads",IntegerType,true), StructField("Suscribers",IntegerType,true),StructField("Videoviews",IntegerType,true)))
scala> val df = spark.read.format("com.databricks.spark.csv").option("header","true").schema(schema).load("data.csv")
df: org.apache.spark.sql.DataFrame = [Rank: string, Grade: string ... 4 more fields]
scala> df.show
+----+-----+-----------+-------------+----------+----------+
|Rank|Grade|Channelname|Video Uploads|Suscribers|Videoviews|
+----+-----+-----------+-------------+----------+----------+
|null| null| null| null| null| null|
|null| null| null| null| null| null|
|null| null| null| null| null| null|
|null| null| null| null| null| null|
|null| null| null| null| null| null|
|null| null| null| null| null| null|
|null| null| null| null| null| null|
|null| null| null| null| null| null|
|null| null| null| null| null| null|
|null| null| null| null| null| null|
|null| null| null| null| null| null|
|null| null| null| null| null| null|
|null| null| null| null| null| null|
|null| null| null| null| null| null|
|null| null| null| null| null| null|
|null| null| null| null| null| null|
|null| null| null| null| null| null|
|null| null| null| null| null| null|
+----+-----+-----------+-------------+----------+----------+
Now if we look at your data we see Subscribers contains non Integer values ("--") and Videoviews contains values which exceed Integer max value (2,147,483,647)
So if we change the schema to conform with the data:
scala> val schema = StructType(Array(StructField("Rank",StringType,true),StructField("Grade", StringType, true),StructField("Channelname",StringType,true),StructField("Video Uploads",IntegerType,true), StructField("Suscribers",StringType,true),StructField("Videoviews",LongType,true)))
schema: org.apache.spark.sql.types.StructType = StructType(StructField(Rank,StringType,true), StructField(Grade,StringType,true), StructField(Channelname,StringType,true), StructField(Video Uploads,IntegerType,true), StructField(Suscribers,StringType,true), StructField(Videoviews,LongType,true))
scala> val df = spark.read.format("com.databricks.spark.csv").option("header","true").schema(schema).load("data.csv")
df: org.apache.spark.sql.DataFrame = [Rank: string, Grade: string ... 4 more fields]
scala> df.show
+----+-----+--------------------+-------------+----------+-----------+
|Rank|Grade| Channelname|Video Uploads|Suscribers| Videoviews|
+----+-----+--------------------+-------------+----------+-----------+
| 1st| A++ | Zee TV| 82757| 18752951|20869786591|
| 2nd| A++ | T-Series| 12661| 61196302|47548839843|
| 3rd| A++ |Cocomelon - Nurse...| 373| 19238251| 9793305082|
| 4th| A++ | SET India| 27323| 31180559|22675948293|
| 5th| A++ | WWE| 36756| 32852346|26273668433|
| 6th| A++ | Movieclips| 30243| 17149705|16618094724|
| 7th| A++ | netd müzik| 8500| 11373567|23898730764|
| 8th| A++ |ABS-CBN Entertain...| 100147| 12149206|17202609850|
| 9th| A++ | Ryan ToysReview| 1140| 16082927|24518098041|
|10th| A++ | Zee Marathi| 74607| 2841811| 2591830307|
|11th| A+ | 5-Minute Crafts| 2085| 33492951| 8587520379|
|12th| A+ | Canal KondZilla| 822| 39409726|19291034467|
|13th| A+ | Like Nastya Vlog| 150| 7662886| 2540099931|
|14th| A+ | Ozuna| 50| 18824912| 8727783225|
|15th| A+ | Wave Music| 16119| 15899764|10989179147|
|16th| A+ | Ch3Thailand| 49239| 11569723| 9388600275|
|17th| A+ | WORLDSTARHIPHOP| 4778| 15830098|11102158475|
|18th| A+ | Vlad and Nikita| 53| -- | 1428274554|
+----+-----+--------------------+-------------+----------+-----------+