numpy corrcoef - compute correlation matrix while ignoring missing data

This will work, using the masked array numpy module:

import numpy as np
import numpy.ma as ma

A = [1, 2, 3, 4, 5, np.NaN]
B = [2, 3, 4, 5.25, np.NaN, 100]

print(ma.corrcoef(ma.masked_invalid(A), ma.masked_invalid(B)))

It outputs:

[[1.0 0.99838143945703]
 [0.99838143945703 1.0]]

Read more here: https://docs.scipy.org/doc/numpy/reference/maskedarray.generic.html


One of the main features of pandas is being NaN friendly. To calculate correlation matrix, simply call df_counties.corr(). Below is an example to demonstrate df.corr() is NaN tolerant whereas np.corrcoef is not.

import pandas as pd
import numpy as np

# data
# ==============================
np.random.seed(0)
df = pd.DataFrame(np.random.randn(100,5), columns=list('ABCDE'))
df[df < 0] = np.nan
df

         A       B       C       D       E
0   1.7641  0.4002  0.9787  2.2409  1.8676
1      NaN  0.9501     NaN     NaN  0.4106
2   0.1440  1.4543  0.7610  0.1217  0.4439
3   0.3337  1.4941     NaN  0.3131     NaN
4      NaN  0.6536  0.8644     NaN  2.2698
5      NaN  0.0458     NaN  1.5328  1.4694
6   0.1549  0.3782     NaN     NaN     NaN
7   0.1563  1.2303  1.2024     NaN     NaN
8      NaN     NaN     NaN  1.9508     NaN
9      NaN     NaN  0.7775     NaN     NaN
..     ...     ...     ...     ...     ...
90     NaN  0.8202  0.4631  0.2791  0.3389
91  2.0210     NaN     NaN  0.1993     NaN
92     NaN     NaN     NaN  0.1813     NaN
93  2.4125     NaN     NaN     NaN  0.2515
94     NaN     NaN     NaN     NaN  1.7389
95  0.9944  1.3191     NaN  1.1286  0.4960
96  0.7714  1.0294     NaN     NaN  0.8626
97     NaN  1.5133  0.5531     NaN  0.2205
98     NaN     NaN  1.1003  1.2980  2.6962
99     NaN     NaN     NaN     NaN     NaN

[100 rows x 5 columns]

# calculations
# ================================
df.corr()

        A       B       C       D       E
A  1.0000  0.2718  0.2678  0.2822  0.1016
B  0.2718  1.0000 -0.0692  0.1736 -0.1432
C  0.2678 -0.0692  1.0000 -0.3392  0.0012
D  0.2822  0.1736 -0.3392  1.0000  0.1562
E  0.1016 -0.1432  0.0012  0.1562  1.0000


np.corrcoef(df, rowvar=False)

array([[ nan,  nan,  nan,  nan,  nan],
       [ nan,  nan,  nan,  nan,  nan],
       [ nan,  nan,  nan,  nan,  nan],
       [ nan,  nan,  nan,  nan,  nan],
       [ nan,  nan,  nan,  nan,  nan]])

In case you expect a different number of nans in each array, you may consider taking a logical AND of non-nan masks.

import numpy as np
import numpy.ma as ma

a=ma.masked_invalid(A)
b=ma.masked_invalid(B)

msk = (~a.mask & ~b.mask)

print(ma.corrcoef(a[msk],b[msk]))