numpy covariance matrix
You have two vectors, not 25. The computer I'm on doesn't have python so I can't test this, but try:
z = zip(x,y)
np.cov(z)
Of course.... really what you want is probably more like:
n=100 # number of points in each vector
num_vects=25
vals=[]
for _ in range(num_vects):
vals.append(np.random.normal(size=n))
np.cov(vals)
This takes the covariance (I think/hope) of num_vects
1xn
vectors
Try this:
import numpy as np
x=np.random.normal(size=25)
y=np.random.normal(size=25)
z = np.vstack((x, y))
c = np.cov(z.T)
Covariance matrix from samples vectors
To clarify the small confusion regarding what is a covariance matrix defined using two N-dimensional vectors, there are two possibilities.
The question you have to ask yourself is whether you consider:
- each vector as N realizations/samples of one single variable (for example two 3-dimensional vectors
[X1,X2,X3]
and[Y1,Y2,Y3]
, where you have 3 realizations for the variables X and Y respectively) - each vector as 1 realization for N variables (for example two 3-dimensional vectors
[X1,Y1,Z1]
and[X2,Y2,Z2]
, where you have 1 realization for the variables X,Y and Z per vector)
Since a covariance matrix is intuitively defined as a variance based on two different variables:
- in the first case, you have 2 variables, N example values for each, so you end up with a 2x2 matrix where the covariances are computed thanks to N samples per variable
- in the second case, you have N variables, 2 samples for each, so you end up with a NxN matrix
About the actual question, using numpy
if you consider that you have 25 variables per vector (took 3 instead of 25 to simplify example code), so one realization for several variables in one vector, use rowvar=0
# [X1,Y1,Z1]
X_realization1 = [1,2,3]
# [X2,Y2,Z2]
X_realization2 = [2,1,8]
numpy.cov([X,Y],rowvar=0) # rowvar false, each column is a variable
Code returns, considering 3 variables:
array([[ 0.5, -0.5, 2.5],
[-0.5, 0.5, -2.5],
[ 2.5, -2.5, 12.5]])
otherwise, if you consider that one vector is 25 samples for one variable, use rowvar=1
(numpy's default parameter)
# [X1,X2,X3]
X = [1,2,3]
# [Y1,Y2,Y3]
Y = [2,1,8]
numpy.cov([X,Y],rowvar=1) # rowvar true (default), each row is a variable
Code returns, considering 2 variables:
array([[ 1. , 3. ],
[ 3. , 14.33333333]])