Numpy: Get random set of rows from 2D array

This is a similar answer to the one Hezi Rasheff provided, but simplified so newer python users understand what's going on (I noticed many new datascience students fetch random samples in the weirdest ways because they don't know what they are doing in python).

You can get a number of random indices from your array by using:

indices = np.random.choice(A.shape[0], number_of_samples, replace=False)

You can then use fancy indexing with your numpy array to get the samples at those indices:

A[indices]

This will get you the specified number of random samples from your data.


>>> A = np.random.randint(5, size=(10,3))
>>> A
array([[1, 3, 0],
       [3, 2, 0],
       [0, 2, 1],
       [1, 1, 4],
       [3, 2, 2],
       [0, 1, 0],
       [1, 3, 1],
       [0, 4, 1],
       [2, 4, 2],
       [3, 3, 1]])
>>> idx = np.random.randint(10, size=2)
>>> idx
array([7, 6])
>>> A[idx,:]
array([[0, 4, 1],
       [1, 3, 1]])

Putting it together for a general case:

A[np.random.randint(A.shape[0], size=2), :]

For non replacement (numpy 1.7.0+):

A[np.random.choice(A.shape[0], 2, replace=False), :]

I do not believe there is a good way to generate random list without replacement before 1.7. Perhaps you can setup a small definition that ensures the two values are not the same.


This is an old post, but this is what works best for me:

A[np.random.choice(A.shape[0], num_rows_2_sample, replace=False)]

change the replace=False to True to get the same thing, but with replacement.


Another option is to create a random mask if you just want to down-sample your data by a certain factor. Say I want to down-sample to 25% of my original data set, which is currently held in the array data_arr:

# generate random boolean mask the length of data
# use p 0.75 for False and 0.25 for True
mask = numpy.random.choice([False, True], len(data_arr), p=[0.75, 0.25])

Now you can call data_arr[mask] and return ~25% of the rows, randomly sampled.

Tags:

Python

Numpy