numpy transpose matrix code example
Example 1: transpose matrix numpy
>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],
[3, 4]])
>>> a.transpose()
array([[1, 3],
[2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],
[2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],
[2, 4]])
Example 2: numpy transpose
>>> np.transpose(x)
array([[0, 2],
[1, 3]])
Example 3: transpose matrices numpy
import numpy as np
A = [1, 2, 3, 4]
np.array(A).T
Example 4: transpose matrix in python without numpy
def transpose(matrix):
rows = len(matrix)
columns = len(matrix[0])
matrix_T = []
for j in range(columns):
row = []
for i in range(rows):
row.append(matrix[i][j])
matrix_T.append(row)
return matrix_T
Example 5: transpose of a matrix using numpy
M = np.matrix([[1,2],[3,4]])
M.transpose()
Example 6: what is the transpose of a matrix
The transpose of a matrix is just a flipped version of
the original matrix. We can transpose a matrix by switching
its rows with its columns. The original rows become the new columns
and the original columns become the new rows.
We denote the transpose of matrix A by AT.
For example:
1 2 3 1 4 7
A = 4 5 6 then AT = 2 5 8
7 8 9 3 6 9
Similarly if
B = 1 2 3 then BT = 1 4
4 5 6 2 5
3 6