Numpy uint8_t arrays to vtkImageData
Using the numpy_support
library one can convert numpy arrays into a vtk data arrays
from vtk.util import numpy_support
def updateFrames(self, depthFrame, rgbFrame=None):
#Build vtkImageData here from the given numpy uint8_t arrays.
self.__depthImageData = vtk.vtkImageData()
depthArray = numpy_support.numpy_to_vtk(depthFrame.ravel(), deep=True, array_type=vtk.VTK_UNSIGNED_CHAR)
# .transpose(2, 0, 1) may be required depending on numpy array order see - https://github.com/quentan/Test_ImageData/blob/master/TestImageData.py
__depthImageData.SetDimensions(depthFrame.shape)
#assume 0,0 origin and 1,1 spacing.
__depthImageData.SetSpacing([1,1])
__depthImageData.SetOrigin([0,0])
__depthImageData.GetPointData().SetScalars(depthArray)
Should provide a working example of how to generate the depthFrame as a starting point
A slightly more complete answer (generalizing to 1-3 channels, different datatypes).
import vtk
import numpy as np
from vtk.util import numpy_support
def numpy_array_as_vtk_image_data(source_numpy_array):
"""
:param source_numpy_array: source array with 2-3 dimensions. If used, the third dimension represents the channel count.
Note: Channels are flipped, i.e. source is assumed to be BGR instead of RGB (which works if you're using cv2.imread function to read three-channel images)
Note: Assumes array value at [0,0] represents the upper-left pixel.
:type source_numpy_array: np.ndarray
:return: vtk-compatible image, if conversion is successful. Raises exception otherwise
:rtype vtk.vtkImageData
"""
if len(source_numpy_array.shape) > 2:
channel_count = source_numpy_array.shape[2]
else:
channel_count = 1
output_vtk_image = vtk.vtkImageData()
output_vtk_image.SetDimensions(source_numpy_array.shape[1], source_numpy_array.shape[0], channel_count)
vtk_type_by_numpy_type = {
np.uint8: vtk.VTK_UNSIGNED_CHAR,
np.uint16: vtk.VTK_UNSIGNED_SHORT,
np.uint32: vtk.VTK_UNSIGNED_INT,
np.uint64: vtk.VTK_UNSIGNED_LONG if vtk.VTK_SIZEOF_LONG == 64 else vtk.VTK_UNSIGNED_LONG_LONG,
np.int8: vtk.VTK_CHAR,
np.int16: vtk.VTK_SHORT,
np.int32: vtk.VTK_INT,
np.int64: vtk.VTK_LONG if vtk.VTK_SIZEOF_LONG == 64 else vtk.VTK_LONG_LONG,
np.float32: vtk.VTK_FLOAT,
np.float64: vtk.VTK_DOUBLE
}
vtk_datatype = vtk_type_by_numpy_type[source_numpy_array.dtype.type]
source_numpy_array = np.flipud(source_numpy_array)
# Note: don't flip (take out next two lines) if input is RGB.
# Likewise, BGRA->RGBA would require a different reordering here.
if channel_count > 1:
source_numpy_array = np.flip(source_numpy_array, 2)
depth_array = numpy_support.numpy_to_vtk(source_numpy_array.ravel(), deep=True, array_type = vtk_datatype)
depth_array.SetNumberOfComponents(channel_count)
output_vtk_image.SetSpacing([1, 1, 1])
output_vtk_image.SetOrigin([-1, -1, -1])
output_vtk_image.GetPointData().SetScalars(depth_array)
output_vtk_image.Modified()
return output_vtk_image