numpy.unique with order preserved
unique()
is slow, O(Nlog(N)), but you can do this by following code:
import numpy as np
a = np.array(['b','a','b','b','d','a','a','c','c'])
_, idx = np.unique(a, return_index=True)
print(a[np.sort(idx)])
output:
['b' 'a' 'd' 'c']
Pandas.unique()
is much faster for big array O(N):
import pandas as pd
a = np.random.randint(0, 1000, 10000)
%timeit np.unique(a)
%timeit pd.unique(a)
1000 loops, best of 3: 644 us per loop
10000 loops, best of 3: 144 us per loop
Use the return_index
functionality of np.unique
. That returns the indices at which the elements first occurred in the input. Then argsort
those indices.
>>> u, ind = np.unique(['b','b','b','a','a','c','c'], return_index=True)
>>> u[np.argsort(ind)]
array(['b', 'a', 'c'],
dtype='|S1')