Onion plot of a ball

Like this?

ContourPlot3D[x^2 + y^2 + z^2, {x, 0, 1}, {y, 0, 1}, {z, 0, 1},
 ContourStyle -> Directive[Opacity[.5], ColorData[97][1]],
 Axes -> False,
 Contours -> {0.25, .5, .75},
 Mesh -> None
 ]

enter image description here


Update: Post-process RegionPlot outputs to remove the walls:

colors = ColorData[97] /@ Range[4];
radii = {1, 3/4, 1/2, 1/4};
regionplots = RegionPlot3D[x^2 + y^2 + z^2 <= #^2, {x, 0, 1}, {y, 0, 1}, {z, 0, 1},
     Mesh -> None, BoundaryStyle -> None, Axes -> False] & /@ radii; 

Graphics3D[{EdgeForm[], FaceForm[{Opacity[.5], #[[2]]}], 
  Cases[Normal[#[[1]]][[1]], _GraphicsGroup, All][[1]]}&/@Transpose[{regionplots, colors}],
  Boxed -> False]

enter image description here

Alternatively, delete the Polygons with constant VertexNormals:

Show[DeleteCases[Normal@RegionPlot3D[x^2 + y^2 + z^2 <= #^2,
     {x, 0, 1}, {y, 0, 1}, {z, 0, 1},
     BoundaryStyle -> None, Mesh -> None, BaseStyle -> Opacity[.5], 
     PlotStyle -> #2, Axes -> False], 
    Polygon[_, VertexNormals -> {{a_, b_, c_} ..}], All] & @@@ 
  Transpose[{radii, colors}], Boxed -> False]

enter image description here

Original answer:

You can use a combination of ImplicitRegion and DiscretizeRegion as follows:

ir[r_] := ImplicitRegion[x^2 + y^2 + z^2 == r^2, {{x, 0, 1}, {y, 0, 1}, {z, 0, 1}}]
radii = {1, 3/4, 1/2, 1/4};
colors = ColorData[97] /@ Range[4];
boundaries = RegionPlot3D[x^2 + y^2 + z^2 <= 1.1,
  {x, 0, 1}, {y, 0, 1}, {z, 0, 1}, 
  MeshFunctions -> (Sqrt[#1^2 + #2^2 + #3^2] &), 
  Mesh -> {Transpose[{radii, colors}]}, MeshStyle -> Thick, 
  PlotStyle -> Opacity[0], Axes -> False, BoundaryStyle -> None];
i = 1;
surfaces = DiscretizeRegion[ir[#], 
  MeshCellStyle -> {{2, All} -> Opacity[0.5, colors[[i++]]]}] & /@ radii;
Legended[Show[surfaces, boundaries], 
  SwatchLegend[colors, "radius = " <> ToString[#, StandardForm] & /@ radii]]

enter image description here