Open linear subspace of a Hilbert space.
If $M \leq \mathcal{H}$ a subspace of a Hilbert space (or generally any normed space) is open, then it contains a ball around the origin $0 \in B_r(0) \subset M$, but for every (none-zero) vector $v \in \mathcal{H}$, we have $$ \frac{r}{2\Vert v \Vert} v \in B_r(0) \subset M $$ But M is a linear subspace so $ v \in M $. Thus the only open subspaces of $ \mathcal{H} $ are $ \mathcal{H} $ itself.
No.
Let $N$ be a normed space and
$M \subsetneq N \tag 1$
a proper subspace. Then $M$ contains no nonempty open set. For if
$\emptyset \ne U \subset M \tag 2$
were open, with
$M \ni m \in U, \tag 3$
we could find $\rho > 0$ such that the open ball
$B(m, \rho) \subset U; \tag 4$
then picking any
$0 \ne v \in N \setminus M \tag 5$
the vector
$m + \alpha (v - m) \in B(m, \rho) \tag 6$
if $0 \ne \alpha \in \Bbb R$ is sufficiently small, since
$\Vert (m + \alpha (v - m)) - m \Vert = \Vert \alpha (v - m) \Vert = \vert \alpha \vert \Vert v - m \Vert < \rho \tag 7$
for
$\vert \alpha \vert < \dfrac{\rho}{\Vert v - m \Vert}; \tag 8$
but then
$m + \alpha(v - m) \in M, \tag 9$
whence
$\alpha(v - m) = m + \alpha(v - m) - m \in M, \tag{10}$
whence
$v - m \in M, \tag{11}$
whence
$v = v - m + m \in M, \tag{12}$
in contradiction to (5); therefore no $B(m, \rho)$ as in (5) can exist, and $M$ cannot be open, since it contains no open set.