Orthogonal Projection
One approach to this is by using Pythagorean Theorem. You fill in the details.
Indeed, suppose that $T \psi \in Im T$. Note that $V = Ker T \oplus Ker T^\bot$. Now write $T \psi = k + k'$ where $k \in Ker T$ and $k' \in Ker T^\bot$. We get that
$$\|k'\|^2 \ge \|T k'\|^2 = \|T k + T k'\|^2 = \|T(T \psi)\|^2 = \|T \psi\|^2 = \|k\|^2 + \|k'^2\|,$$
from which we gather that $k = 0$. Therefore $T \psi \in Ker T^\bot$. Thus $Im T \subset Ker T^\bot$. On the other hand if $\phi \in Im T^\bot \cap Ker T^\bot$, then one can show that $\phi \in Im T^* \cap Ker T^*$. (Because $Im T^\bot = Ker T^*$.) One can also show that $T^*$ is a projection. Let $\phi = T^* \psi$. Then $T^* \psi = T^* T^* \psi = T^* \phi = 0$. Hence $\phi = 0$. Since $V = Im T \oplus Im T^\bot$, we get that $Ker T^\bot \subset Im T$.