Example 1: pd merge on multiple columns
new_df = pd.merge(A_df, B_df, how='left', left_on=['A_c1','c2'], right_on = ['B_c1','c2'])
Example 2: join on column pandas
df1.merge(df2,on='columnName',how='left')
Example 3: pandas merge python
import pandas as pd
df1 = pd.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'],
'value': [1, 2, 3, 5]})
df2 = pd.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'],
'value': [5, 6, 7, 8]})
df1.merge(df2, left_on='lkey', right_on='rkey')
Example 4: joins in pandas
pd.merge(product,customer,how='inner',left_on=['Product_ID','Seller_City'],right_on=['Product_ID','City'])
Example 5: merge pandas
create table bricks (
brick_id integer,
colour varchar2(10)
);
create table colours (
colour_name varchar2(10),
minimum_bricks_needed integer
);
insert into colours values ( 'blue', 2 );
insert into colours values ( 'green', 3 );
insert into colours values ( 'red', 2 );
insert into colours values ( 'orange', 1);
insert into colours values ( 'yellow', 1 );
insert into colours values ( 'purple', 1 );
insert into bricks values ( 1, 'blue' );
insert into bricks values ( 2, 'blue' );
insert into bricks values ( 3, 'blue' );
insert into bricks values ( 4, 'green' );
insert into bricks values ( 5, 'green' );
insert into bricks values ( 6, 'red' );
insert into bricks values ( 7, 'red' );
insert into bricks values ( 8, 'red' );
insert into bricks values ( 9, null );
commit;
Example 6: merge pandas
select * from bricks;
select * from colours;