Output multiple losses added by add_loss in Keras
It turns out that the answer is not straight forward and furthermore, Keras does not support this feature out of the box. However, I've implemented a solution where each loss-layer outputs the loss and a customized callback function records it after every epoch. The solution for my multi-headed example can be found here: https://gist.github.com/tik0/7c03ad11580ae0d69c326ac70b88f395
I'm using the version 2.2.4-tf of Keras and the solution above didn't work for me. Here is the solution I found (to continue the example of dumkar):
reconstruction_loss = mse(K.flatten(inputs), K.flatten(outputs))
kl_loss = beta*K.mean(- 0.5 * 1/latent_dim * K.sum(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1))
model.add_loss(reconstruction_loss)
model.add_loss(kl_loss)
model.add_metric(kl_loss, name='kl_loss', aggregation='mean')
model.add_metric(reconstruction_loss, name='mse_loss', aggregation='mean')
model.compile(optimizer='adam')
Hope it will help you.
This is indeed not supported, and currently discussed on different places on the web. The solution can be obtained by adding your losses again as a separate metric after the compile step (also discussed here)
This results in something like this (specifically for a VAE):
reconstruction_loss = mse(K.flatten(inputs), K.flatten(outputs))
kl_loss = beta*K.mean(- 0.5 * 1/latent_dim * K.sum(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1))
model.add_loss(reconstruction_loss)
model.add_loss(kl_loss)
model.compile(optimizer='adam')
model.metrics_tensors.append(kl_loss)
model.metrics_names.append("kl_loss")
model.metrics_tensors.append(reconstruction_loss)
model.metrics_names.append("mse_loss")
For me this gives an output like this:
Epoch 1/1
252/252 [==============================] - 23s 92ms/step - loss: 0.4336 - kl_loss: 0.0823 - mse_loss: 0.3513 - val_loss: 0.2624 - val_kl_loss: 0.0436 - val_mse_loss: 0.2188