Example 1: python pandas difference between two data frames
diff_df = pd.merge(df1, df2, how='outer', indicator='Exist')
diff_df = diff_df.loc[diff_df['Exist'] != 'both']
Example 2: comparing two dataframe columns
comparison_column = np.where(df["col1"] == df["col2"], True, False)
Example 3: dataframe equals pandas
>>> exactly_equal = pd.DataFrame({1: [10], 2: [20]})
>>> exactly_equal
1 2
0 10 20
>>> df.equals(exactly_equal)
True
Example 4: pandas compare two columns
import numpy as np
import pandas as pd
a = [['10', '1.2', '4.2'], ['15', '70', '0.03'], ['8', '5', '0']]
df = pd.DataFrame(a, columns=['one', 'two', 'three'])
df['que'] = np.where((df['one'] >= df['two']) & (df['one'] <= df['three'])
, df['one'], np.nan)
conditions = [
(df['one'] >= df['two']) & (df['one'] <= df['three']),
df['one'] < df['two']]
choices = [df['one'], df['two']]
df['que'] = np.select(conditions, choices, default=np.nan)
conditions = [
df['one'] < df['two'],
df['one'] <= df['three']]
choices = [df['two'], df['one']]
a = [['10', '1.2', '4.2'], ['15', '70', '0.03'], ['8', '5', '0']]
df = pd.DataFrame(a, columns=['one', 'two', 'three'])
df2 = df.astype(float)
Example 5: pandas two dataframes equal
>>> df = pd.DataFrame({1: [10], 2: [20]})
>>> exactly_equal = pd.DataFrame({1: [10], 2: [20]})
>>> df.equals(exactly_equal)
True