pandas dataframe drop columns by number of nan

There is a thresh param for dropna, you just need to pass the length of your df - the number of NaN values you want as your threshold:

In [13]:

dff.dropna(thresh=len(dff) - 2, axis=1)
Out[13]:
          A         B
0  0.517199 -0.806304
1 -0.643074  0.229602
2  0.656728  0.535155
3       NaN -0.162345
4 -0.309663 -0.783539
5  1.244725 -0.274514
6 -0.254232       NaN
7 -1.242430  0.228660
8 -0.311874 -0.448886
9 -0.984453 -0.755416

So the above will drop any column that does not meet the criteria of the length of the df (number of rows) - 2 as the number of non-Na values.


You can use a conditional list comprehension:

>>> dff[[c for c in dff if dff[c].isnull().sum() < 2]]
          A         B
0 -0.819004  0.919190
1  0.922164  0.088111
2  0.188150  0.847099
3       NaN -0.053563
4  1.327250 -0.376076
5  3.724980  0.292757
6 -0.319342       NaN
7 -1.051529  0.389843
8 -0.805542 -0.018347
9 -0.816261 -1.627026

Tags:

Python

Pandas