pandas dataframe from csv code example
Example 1: command to read file in python using pandas
import panda as pd
file_csv = pd.read_csv("file path") ## as csv format
file_excel = pd.read_excel("file path") ## as excel format
file_json = pd.read_json("file path") ## as json format
file_html = pd.read_html("file path") ## as html format
file_localClipboard = pd.read_clipboard("file path") ## as clipboard format
file_MSExcel = pd.read_excel("file path") ## as excel format
file_HDF5 = pd.read_hdf("file path") ## as hdf5 fomrmat
file_Feather = pd.read_feather("file path") ## as feather format
file_msgpack = pd.read_msgpack("file path") ## as msgpack format
file_stata = pd.read_stata("file path") ## as stata format
file_SAS = pd.read_sas("file path") ## as SAS format
file_paythonPickle = pd.read_pickle("file path") ## as paython_pickle format
file_SQL = pd.read_sql("file path") ## as sql format
file_google_big_query = pd.read_gbq("file path") ## as google big query
Example 2: save dataframe to csv
df.to_csv(file_name, sep='\t')
Example 3: how to set up dataframe from csv
import pandas as pd
column_names = ['sepel lengh', 'sepel width', 'petal lengh', 'petal width', 'class']
iris = pd.read_csv('iris.csv', names=column_names)
print(iris)
Example 4: pandas read csv
import pandas as pd
cereal_df = pd.read_csv("/tmp/tmp07wuam09/data/cereal.csv")
cereal_df2 = pd.read_csv("data/cereal.csv")
# Are they the same?
print(pd.DataFrame.equals(cereal_df, cereal_df2))
Example 5: convert csv to pandas dataframe
import pandas as pd
df = pd.read_csv("sample_data.csv")
# .csv file format
column1,column2
1,2
3,4
5,6
# pandas dataframe
column1 column2
0 1 2
1 3 4
2 5 6
Example 6: pandas go through csv file
data = pd.read_csv(
"data/files/complex_data_example.tsv", # relative python path to subdirectory
sep='\t' # Tab-separated value file.
quotechar="'", # single quote allowed as quote character
dtype={"salary": int}, # Parse the salary column as an integer
usecols=['name', 'birth_date', 'salary']. # Only load the three columns specified.
parse_dates=['birth_date'], # Intepret the birth_date column as a date
skiprows=10, # Skip the first 10 rows of the file
na_values=['.', '??'] # Take any '.' or '??' values as NA
)