Pandas - dataframe groupby - how to get sum of multiple columns

By using apply

df.groupby(['col1', 'col2'])["col3", "col4"].apply(lambda x : x.astype(int).sum())
Out[1257]: 
           col3  col4
col1 col2            
a    c        2     4
     d        1     2
b    d        1     2
     e        2     4

If you want to agg

df.groupby(['col1', 'col2']).agg({'col3':'sum','col4':'sum'})

Another generic solution is

df.groupby(['col1','col2']).agg({'col3':'sum','col4':'sum'}).reset_index()

This will give you the required output.

UPDATED (June 2020): Introduced in Pandas 0.25.0, Pandas has added new groupby behavior “named aggregation” and tuples, for naming the output columns when applying multiple aggregation functions to specific columns.

df.groupby(['col1','col2']).agg(
     sum_col3 = ('col3','sum'),
     sum_col4 = ('col4','sum'),
     ).reset_index()

Also, you can name new columns, e.g. I've used 'sum_col3' and 'sum_col4', but you can use any name you want.

Refer to Link for detailed description.