pandas DataFrame reset_index which can handle duplicate column names?
Use range
with length of columns by shape
:
df.columns = range(df.shape[1])
print (df)
0 1 2
0 0.228080 0.884450 0.753401
1 0.176790 0.741979 0.525305
2 0.680255 0.730258 0.449681
3 0.169420 0.660825 0.986554
4 0.302204 0.040413 0.902899
Another solution with double transposing by T
and reset_index
with parameter drop=True
:
df = df.T.reset_index(drop=True).T
print (df)
0 1 2
0 0.024846 0.688193 0.887926
1 0.284681 0.895319 0.142876
2 0.440834 0.299527 0.762815
3 0.936967 0.928907 0.642960
4 0.801077 0.085773 0.866651
you can use set_axis() method:
In [54]: df
Out[54]:
A A B
0 0.934900 0.817182 0.166270
1 0.064543 0.139431 0.249576
2 0.709349 0.731913 0.965048
3 0.284955 0.479898 0.496652
4 0.520749 0.464256 0.999993
In [55]: df.set_axis(1, range(len(df.columns)))
In [56]: df
Out[56]:
0 1 2
0 0.934900 0.817182 0.166270
1 0.064543 0.139431 0.249576
2 0.709349 0.731913 0.965048
3 0.284955 0.479898 0.496652
4 0.520749 0.464256 0.999993