Pandas: GroupBy Shift And Cumulative Sum
While working on this problem, as the DataFrame size grows, using lambdas on transform starts to get very slow. I found out that using some DataFrameGroupBy methods (like cumsum and shift instead of lambdas are much faster.
So here's my proposed solution, creating a 'temp'
column to save the cumsum for each ID and then shifting in a different groupby:
df['temp'] = df.groupby("ID")['X'].cumsum()
df['transformed'] = df.groupby("ID")['temp'].shift()
df = df.drop(columns=["temp"])
You need using apply
, since one function is under groupby
object
which is cumsum
another function shift
is for all df
temp['transformed'] = temp.groupby('ID')['X'].apply(lambda x : x.cumsum().shift())
temp
Out[287]:
ID X transformed
0 a 1 NaN
1 a 1 1.0
2 a 1 2.0
3 b 1 NaN
4 b 1 1.0
5 b 1 2.0
6 c 1 NaN
7 c 1 1.0
You could use transform()
to feed the separate groups that are created at each level of groupby
into the cumsum()
and shift()
methods.
temp['transformed'] = \
temp.groupby('ID')['X'].transform(lambda x: x.cumsum().shift())
ID X transformed 0 a 1 NaN 1 a 1 1.0 2 a 1 2.0 3 b 1 NaN 4 b 1 1.0 5 b 1 2.0 6 c 1 NaN 7 c 1 1.0
For more info on transform()
please see here:
- https://jakevdp.github.io/PythonDataScienceHandbook/03.08-aggregation-and-grouping.html#Transformation
- https://pandas.pydata.org/pandas-docs/version/0.22/groupby.html#transformation