Pandas Lambda Function with Nan Support
Within pandas 0.24.2, I use
df.apply(lambda x: x['col_name'] if x[col1] is np.nan else expressions_another, axis=1)
because pd.isnull() doesn't work.
in my work,I found the following phenomenon,
No running results:
df['prop'] = df.apply(lambda x: (x['buynumpday'] / x['cnumpday']) if pd.isnull(x['cnumpday']) else np.nan, axis=1)
Results exist:
df['prop'] = df.apply(lambda x: (x['buynumpday'] / x['cnumpday']) if x['cnumpday'] is not np.nan else np.nan, axis=1)
So far, I still don't know the deeper reason, but I have these experiences, for object, use [is np.nan()] or pd.isna(). For a float, use np.isnan() or pd.isna().
You need to use np.nan()
#import numpy as np
df2=df.apply(lambda x: 2 if np.isnan(x['Col1']) else 1, axis=1)
df2
Out[1307]:
0 1
1 1
2 1
3 2
dtype: int64
You need pandas.isnull
for check if scalar is NaN
:
df = pd.DataFrame({ 'Col1' : [1,2,3,np.NaN],
'Col2' : [8,9,7,10]})
df2 = df.apply(lambda x: x['Col2'] if pd.isnull(x['Col1']) else x['Col1'], axis=1)
print (df)
Col1 Col2
0 1.0 8
1 2.0 9
2 3.0 7
3 NaN 10
print (df2)
0 1.0
1 2.0
2 3.0
3 10.0
dtype: float64
But better is use Series.combine_first
:
df['Col1'] = df['Col1'].combine_first(df['Col2'])
print (df)
Col1 Col2
0 1.0 8
1 2.0 9
2 3.0 7
3 10.0 10
Another solution with Series.update
:
df['Col1'].update(df['Col2'])
print (df)
Col1 Col2
0 8.0 8
1 9.0 9
2 7.0 7
3 10.0 10
Assuming that you do have a second column, that is:
df = pd.DataFrame({ 'Col1' : [1,2,3,np.NaN], 'Col2': [1,2,3,4]})
The correct solution to this problem would be:
df['Col1'].fillna(df['Col2'], inplace=True)