Pandas read nested json

You can use json_normalize:

import json

with open('myJson.json') as data_file:    
    data = json.load(data_file)  

df = pd.json_normalize(data, 'locations', ['date', 'number', 'name'], 
                    record_prefix='locations_')
print (df)
  locations_arrTime locations_arrTimeDiffMin locations_depTime  \
0                                                        06:32   
1             06:37                        1             06:40   
2             08:24                        1                     

  locations_depTimeDiffMin           locations_name locations_platform  \
0                        0  Spital am Pyhrn Bahnhof                  2   
1                        0  Windischgarsten Bahnhof                  2   
2                                    Linz/Donau Hbf               1A-B   

  locations_stationIdx locations_track number    name        date  
0                    0          R 3932         R 3932  01.10.2016  
1                    1                         R 3932  01.10.2016  
2                   22                         R 3932  01.10.2016 

EDIT:

You can use read_json with parsing name by DataFrame constructor and last groupby with apply join:

df = pd.read_json("myJson.json")
df.locations = pd.DataFrame(df.locations.values.tolist())['name']
df = df.groupby(['date','name','number'])['locations'].apply(','.join).reset_index()
print (df)
        date    name number                                          locations
0 2016-01-10  R 3932         Spital am Pyhrn Bahnhof,Windischgarsten Bahnho...