Pandas: resample a dataframe to match a DatetimeIndex of a different dataframe
Use reindex
:
series2.reindex(series1.index)
Output:
2020-06-16 23:16:00 2
2020-06-16 23:17:00 4
2020-06-16 23:18:00 6
2020-06-16 23:19:00 8
2020-06-16 23:20:00 10
2020-06-16 23:21:00 12
2020-06-16 23:22:00 14
2020-06-16 23:23:00 16
2020-06-16 23:24:00 18
2020-06-16 23:25:00 20
2020-06-16 23:26:00 22
2020-06-16 23:27:00 24
2020-06-16 23:28:00 26
2020-06-16 23:29:00 28
2020-06-16 23:30:00 30
2020-06-16 23:31:00 32
2020-06-16 23:32:00 34
2020-06-16 23:33:00 36
2020-06-16 23:34:00 38
2020-06-16 23:35:00 40
2020-06-16 23:36:00 42
2020-06-16 23:37:00 44
2020-06-16 23:38:00 46
2020-06-16 23:39:00 48
2020-06-16 23:40:00 50
Freq: T, dtype: int64
Wouldn't a simple resample yield the results are looking for?
series2.resample('T').first()
If your goal is to merge the resampled timestamp back to the first dataset, you could do that as follows:
dt_map = {}
for group_label, group_series in series2.resample('T'):
dt_map.update({x:group_label for x in group_series.index})
# Overwrite the index
series2.index = series2.index.map(dt_map)
Note: If you want to perform an aggregate function, stick with the first option.
IIUC, this is what you need:
series2[series2.index.isin(series1.index)]