Pandas: rolling mean by time interval

What about something like this:

First resample the data frame into 1D intervals. This takes the mean of the values for all duplicate days. Use the fill_method option to fill in missing date values. Next, pass the resampled frame into pd.rolling_mean with a window of 3 and min_periods=1 :

pd.rolling_mean(df.resample("1D", fill_method="ffill"), window=3, min_periods=1)

            favorable  unfavorable     other
enddate
2012-10-25   0.495000     0.485000  0.025000
2012-10-26   0.527500     0.442500  0.032500
2012-10-27   0.521667     0.451667  0.028333
2012-10-28   0.515833     0.450000  0.035833
2012-10-29   0.488333     0.476667  0.038333
2012-10-30   0.495000     0.470000  0.038333
2012-10-31   0.512500     0.460000  0.029167
2012-11-01   0.516667     0.456667  0.026667
2012-11-02   0.503333     0.463333  0.033333
2012-11-03   0.490000     0.463333  0.046667
2012-11-04   0.494000     0.456000  0.043333
2012-11-05   0.500667     0.452667  0.036667
2012-11-06   0.507333     0.456000  0.023333
2012-11-07   0.510000     0.443333  0.013333

UPDATE: As Ben points out in the comments, with pandas 0.18.0 the syntax has changed. With the new syntax this would be:

df.resample("1d").sum().fillna(0).rolling(window=3, min_periods=1).mean()

In the meantime, a time-window capability was added. See this link.

In [1]: df = DataFrame({'B': range(5)})

In [2]: df.index = [Timestamp('20130101 09:00:00'),
   ...:             Timestamp('20130101 09:00:02'),
   ...:             Timestamp('20130101 09:00:03'),
   ...:             Timestamp('20130101 09:00:05'),
   ...:             Timestamp('20130101 09:00:06')]

In [3]: df
Out[3]: 
                     B
2013-01-01 09:00:00  0
2013-01-01 09:00:02  1
2013-01-01 09:00:03  2
2013-01-01 09:00:05  3
2013-01-01 09:00:06  4

In [4]: df.rolling(2, min_periods=1).sum()
Out[4]: 
                       B
2013-01-01 09:00:00  0.0
2013-01-01 09:00:02  1.0
2013-01-01 09:00:03  3.0
2013-01-01 09:00:05  5.0
2013-01-01 09:00:06  7.0

In [5]: df.rolling('2s', min_periods=1).sum()
Out[5]: 
                       B
2013-01-01 09:00:00  0.0
2013-01-01 09:00:02  1.0
2013-01-01 09:00:03  3.0
2013-01-01 09:00:05  3.0
2013-01-01 09:00:06  7.0