Pandas: Selecting rows based on value counts of a particular column
I think you can use groupby
by column sym
and filter
values with length == 2
:
print df.groupby("sym").filter(lambda x: len(x) == 2)
price sym
1 0.400157 b
2 0.978738 b
7 -0.151357 e
8 -0.103219 e
Second solution use isin
with boolean indexing:
s = df.sym.value_counts()
print s[s == 2].index
Index([u'e', u'b'], dtype='object')
print df[df.sym.isin(s[s == 2].index)]
price sym
1 0.400157 b
2 0.978738 b
7 -0.151357 e
8 -0.103219 e
And fastest solution with transform
and boolean indexing
:
print (df[df.groupby("sym")["sym"].transform('size') == 2])
price sym
1 -1.2940 b
2 1.8423 b
7 0.6280 e
8 0.5361 e
You can use map
, which should be faster than using groupby
and transform
:
df[df['sym'].map(df['sym'].value_counts()) == 2]
e.g.
%%timeit
df[df['sym'].map(df['sym'].value_counts()) == 2]
Out[1]:
1.83 ms ± 23.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%%timeit
df[df.groupby("sym")["sym"].transform('size') == 2]
Out[2]:
2.08 ms ± 41.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)