pandas sum rows code example
Example 1: pandas sum rows
# Basic syntax:
df.sum(axis=1)
# Create new column consisting of row sums across specific columns:
df['sums'] = df.iloc[:, 6:23].sum(axis=1)
# Where:
# - iloc allows you to specify the rows and columns with slicing. Here
# I select all rows and sum over columns 6-22
# - df['sums'] is how you assign a new column named 'sums' to the df
# Example usage:
import pandas as pd
import numpy as np
# Create dataframe:
df = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]),
columns=['a', 'b', 'c'])
print(df)
a b c
0 1 2 3
1 4 5 6
2 7 8 9
# Sum columns 1-2:
df['sums'] = df.iloc[:, 1:3].sum(axis=1)
print(df)
a b c sums
0 1 2 3 5
1 4 5 6 11
2 7 8 9 17
Example 2: pandas ttable with sum totals
import numpy as np
import pandas as pd
df = pd.DataFrame({'a': [10,20],'b':[100,200],'c': ['a','b']})
df.loc['Column_Total']= df.sum(numeric_only=True, axis=0)
df.loc[:,'Row_Total'] = df.sum(numeric_only=True, axis=1)
print(df)
a b c Row_Total
0 10.0 100.0 a 110.0
1 20.0 200.0 b 220.0
Column_Total 30.0 300.0 NaN 330.0
Example 3: pandas groupby sum
df.groupby(['Fruit','Name'])['Number'].sum()
Example 4: pandas row sum
df.sum(axis=1)
Example 5: pandas sum missing values
dfObj.isnull().sum()
Example 6: pandas sum
# select numeric columns and calculate the sums
sums = df.select_dtypes(pd.np.number).sum().rename('total')
# append sums to the data frame
df.append(sums)
# X MyColumn Y Z
#0 A 84.0 13.0 69.0
#1 B 76.0 77.0 127.0
#2 C 28.0 69.0 16.0
#3 D 28.0 28.0 31.0
#4 E 19.0 20.0 85.0
#5 F 84.0 193.0 70.0
#total NaN 319.0 400.0 398.0