Pandas: ValueError: cannot convert float NaN to integer

ValueError: cannot convert float NaN to integer

From v0.24, you actually can. Pandas introduces Nullable Integer Data Types which allows integers to coexist with NaNs.

Given a series of whole float numbers with missing data,

s = pd.Series([1.0, 2.0, np.nan, 4.0])
s

0    1.0
1    2.0
2    NaN
3    4.0
dtype: float64

s.dtype
# dtype('float64')

You can convert it to a nullable int type (choose from one of Int16, Int32, or Int64) with,

s2 = s.astype('Int32') # note the 'I' is uppercase
s2

0      1
1      2
2    NaN
3      4
dtype: Int32

s2.dtype
# Int32Dtype()

Your column needs to have whole numbers for the cast to happen. Anything else will raise a TypeError:

s = pd.Series([1.1, 2.0, np.nan, 4.0])

s.astype('Int32')
# TypeError: cannot safely cast non-equivalent float64 to int32

For identifying NaN values use boolean indexing:

print(df[df['x'].isnull()])

Then for removing all non-numeric values use to_numeric with parameter errors='coerce' - to replace non-numeric values to NaNs:

df['x'] = pd.to_numeric(df['x'], errors='coerce')

And for remove all rows with NaNs in column x use dropna:

df = df.dropna(subset=['x'])

Last convert values to ints:

df['x'] = df['x'].astype(int)

Tags:

Python

Pandas

Csv