Parameter "stratify" from method "train_test_split" (scikit Learn)

This stratify parameter makes a split so that the proportion of values in the sample produced will be the same as the proportion of values provided to parameter stratify.

For example, if variable y is a binary categorical variable with values 0 and 1 and there are 25% of zeros and 75% of ones, stratify=y will make sure that your random split has 25% of 0's and 75% of 1's.


For my future self who comes here via Google:

train_test_split is now in model_selection, hence:

from sklearn.model_selection import train_test_split

# given:
# features: xs
# ground truth: ys

x_train, x_test, y_train, y_test = train_test_split(xs, ys,
                                                    test_size=0.33,
                                                    random_state=0,
                                                    stratify=ys)

is the way to use it. Setting the random_state is desirable for reproducibility.