Plot image color histogram using matplotlib
I tried your update code and it worked fine. Here is exactly what I am trying:
import PIL
from PIL import Image
from matplotlib import pyplot as plt
im = Image.open('./color_gradient.png')
w, h = im.size
colors = im.getcolors(w*h)
def hexencode(rgb):
r=rgb[0]
g=rgb[1]
b=rgb[2]
return '#%02x%02x%02x' % (r,g,b)
for idx, c in enumerate(colors):
plt.bar(idx, c[0], color=hexencode(c[1]))
plt.show()
Update:
I think matplotlib is trying to put a black border around every bar. If there are too many bars, the bar is too thin to have color. If you have the toolbar, you can zoom in on the plot and see that the bars do indeed have color. So, if you set the edge color by:
for idx, c in enumerate(colors):
plt.bar(idx, c[0], color=hexencode(c[1]),edgecolor=hexencode(c[1]))
It works!
Image to be processed:
Result:
Profiling
Sorted by tottime:
ncalls tottime percall cumtime percall filename:lineno(function)
1 23.424 23.424 24.672 24.672 {built-in method mainloop}
460645 8.626 0.000 8.626 0.000 {numpy.core.multiarray.array}
22941 7.909 0.000 18.447 0.001 C:\Python27\lib\site-packages\matplotlib\artist.py:805(get_aliases)
6814123 3.900 0.000 3.900 0.000 {method 'startswith' of 'str' objects}
22941 2.244 0.000 2.244 0.000 {dir}
276714 2.140 0.000 2.140 0.000 C:\Python27\lib\weakref.py:243(__init__)
4336835 2.029 0.000 2.029 0.000 {getattr}
1927044 1.962 0.000 3.027 0.000 C:\Python27\lib\site-packages\matplotlib\artist.py:886(is_alias)
114811 1.852 0.000 3.883 0.000 C:\Python27\lib\site-packages\matplotlib\colors.py:317(to_rgba)
69559 1.653 0.000 2.841 0.000 C:\Python27\lib\site-packages\matplotlib\path.py:86(__init__)
68869 1.425 0.000 11.700 0.000 C:\Python27\lib\site-packages\matplotlib\patches.py:533(_update_patch_transform)
161205 1.316 0.000 1.618 0.000 C:\Python27\lib\site-packages\matplotlib\cbook.py:381(is_string_like)
1 1.232 1.232 1.232 1.232 {gc.collect}
344698 1.116 0.000 1.513 0.000 C:\Python27\lib\site-packages\matplotlib\cbook.py:372(iterable)
22947 1.111 0.000 3.768 0.000 {built-in method draw_path}
276692 1.024 0.000 3.164 0.000 C:\Python27\lib\site-packages\matplotlib\transforms.py:80(__init__)
2 1.021 0.510 1.801 0.900 C:\Python27\lib\site-packages\matplotlib\colors.py:355(to_rgba_array)
22947 0.818 0.000 14.677 0.001 C:\Python27\lib\site-packages\matplotlib\patches.py:371(draw)
183546/183539 0.793 0.000 2.030 0.000 C:\Python27\lib\site-packages\matplotlib\units.py:117(get_converter)
138006 0.756 0.000 1.267 0.000 C:\Python27\lib\site-packages\matplotlib\transforms.py:126(set_children)
Sorted by Cumulative Time
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.001 0.001 84.923 84.923 C:\Python27\test.py:23(imageProcess)
1 0.013 0.013 44.079 44.079 C:\Python27\lib\site-packages\matplotlib\pyplot.py:2080(bar)
1 0.286 0.286 43.825 43.825 C:\Python27\lib\site-packages\matplotlib\axes.py:4556(bar)
1 0.000 0.000 40.533 40.533 C:\Python27\lib\site-packages\matplotlib\pyplot.py:123(show)
1 0.000 0.000 40.533 40.533 C:\Python27\lib\site-packages\matplotlib\backend_bases.py:69(__call__)
22943 0.171 0.000 24.964 0.001 C:\Python27\lib\site-packages\matplotlib\patches.py:508(__init__)
1 0.000 0.000 24.672 24.672 C:\Python27\lib\site-packages\matplotlib\backends\backend_tkagg.py:68(mainloop)
1 0.000 0.000 24.672 24.672 C:\Python27\lib\lib-tk\Tkinter.py:323(mainloop)
1 23.424 23.424 24.672 24.672 {built-in method mainloop}
22947 0.499 0.000 24.654 0.001 C:\Python27\lib\site-packages\matplotlib\patches.py:55(__init__)
22941 0.492 0.000 20.180 0.001 C:\Python27\lib\site-packages\matplotlib\artist.py:1136(setp)
22941 0.135 0.000 18.730 0.001 C:\Python27\lib\site-packages\matplotlib\artist.py:788(__init__)
22941 7.909 0.000 18.447 0.001 C:\Python27\lib\site-packages\matplotlib\artist.py:805(get_aliases)
72/65 0.071 0.001 17.118 0.263 {built-in method call}
24/12 0.000 0.000 17.095 1.425 C:\Python27\lib\lib-tk\Tkinter.py:1405(__call__)
22941 0.188 0.000 16.647 0.001 C:\Python27\lib\site-packages\matplotlib\axes.py:1476(add_patch)
1 0.000 0.000 15.861 15.861 C:\Python27\lib\site-packages\matplotlib\backends\backend_tkagg.py:429(show)
1 0.000 0.000 15.861 15.861 C:\Python27\lib\lib-tk\Tkinter.py:909(update)
1 0.000 0.000 15.846 15.846 C:\Python27\lib\site-packages\matplotlib\backends\backend_tkagg.py:219(resize)
1 0.000 0.000 15.503 15.503 C:\Python27\lib\site-packages\matplotlib\backends\backend_tkagg.py:238(draw)
It seems that all the time is spent in matplotlib. If you want to speed it up, you can either find a different plotting tool or reduce the number of 'bars'. Try doing it yourself with rectangle on a canvas.
Timing:
- Posted code above: 75s
- Drawing a line for each one i.e. plt.plot([n,n],[0,count],etc..): 95s
I have been working on a similar problem and came across this thread, 5 years late. For larger images, the accepted answer was taking way too long to simply "generate a color histogram of an image".
I used openCV instead of PIL to generate the histograms and it is much quicker.
import cv2
import numpy as np
from matplotlib import pyplot as plt
file0 = 'image.jpg'
img = cv2.imread(file0)
color = ('b','g','r')
plt.figure()
for i,col in enumerate(color):
histr = cv2.calcHist([img],[i],None,[256],[0,256])
plt.plot(histr,color = col)
plt.xlim([0,256])
plt.show()