Plot random effects from lmer (lme4 package) using qqmath or dotplot: How to make it look fancy?
Didzis' answer is great! Just to wrap it up a little bit, I put it into its own function that behaves a lot like qqmath.ranef.mer()
and dotplot.ranef.mer()
. In addition to Didzis' answer, it also handles models with multiple correlated random effects (like qqmath()
and dotplot()
do). Comparison to qqmath()
:
require(lme4) ## for lmer(), sleepstudy
require(lattice) ## for dotplot()
fit <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy)
ggCaterpillar(ranef(fit, condVar=TRUE)) ## using ggplot2
qqmath(ranef(fit, condVar=TRUE)) ## for comparison
Comparison to dotplot()
:
ggCaterpillar(ranef(fit, condVar=TRUE), QQ=FALSE)
dotplot(ranef(fit, condVar=TRUE))
Sometimes, it might be useful to have different scales for the random effects - something which dotplot()
enforces. When I tried to relax this, I had to change the facetting (see this answer).
ggCaterpillar(ranef(fit, condVar=TRUE), QQ=FALSE, likeDotplot=FALSE)
## re = object of class ranef.mer
ggCaterpillar <- function(re, QQ=TRUE, likeDotplot=TRUE) {
require(ggplot2)
f <- function(x) {
pv <- attr(x, "postVar")
cols <- 1:(dim(pv)[1])
se <- unlist(lapply(cols, function(i) sqrt(pv[i, i, ])))
ord <- unlist(lapply(x, order)) + rep((0:(ncol(x) - 1)) * nrow(x), each=nrow(x))
pDf <- data.frame(y=unlist(x)[ord],
ci=1.96*se[ord],
nQQ=rep(qnorm(ppoints(nrow(x))), ncol(x)),
ID=factor(rep(rownames(x), ncol(x))[ord], levels=rownames(x)[ord]),
ind=gl(ncol(x), nrow(x), labels=names(x)))
if(QQ) { ## normal QQ-plot
p <- ggplot(pDf, aes(nQQ, y))
p <- p + facet_wrap(~ ind, scales="free")
p <- p + xlab("Standard normal quantiles") + ylab("Random effect quantiles")
} else { ## caterpillar dotplot
p <- ggplot(pDf, aes(ID, y)) + coord_flip()
if(likeDotplot) { ## imitate dotplot() -> same scales for random effects
p <- p + facet_wrap(~ ind)
} else { ## different scales for random effects
p <- p + facet_grid(ind ~ ., scales="free_y")
}
p <- p + xlab("Levels") + ylab("Random effects")
}
p <- p + theme(legend.position="none")
p <- p + geom_hline(yintercept=0)
p <- p + geom_errorbar(aes(ymin=y-ci, ymax=y+ci), width=0, colour="black")
p <- p + geom_point(aes(size=1.2), colour="blue")
return(p)
}
lapply(re, f)
}
One possibility is to use library ggplot2
to draw similar graph and then you can adjust appearance of your plot.
First, ranef
object is saved as randoms
. Then variances of intercepts are saved in object qq
.
randoms<-ranef(fit1, postVar = TRUE)
qq <- attr(ranef(fit1, postVar = TRUE)[[1]], "postVar")
Object rand.interc
contains just random intercepts with level names.
rand.interc<-randoms$Batch
All objects put in one data frame. For error intervals sd.interc
is calculated as 2 times square root of variance.
df<-data.frame(Intercepts=randoms$Batch[,1],
sd.interc=2*sqrt(qq[,,1:length(qq)]),
lev.names=rownames(rand.interc))
If you need that intercepts are ordered in plot according to value then lev.names
should be reordered. This line can be skipped if intercepts should be ordered by level names.
df$lev.names<-factor(df$lev.names,levels=df$lev.names[order(df$Intercepts)])
This code produces plot. Now points will differ by shape
according to factor levels.
library(ggplot2)
p <- ggplot(df,aes(lev.names,Intercepts,shape=lev.names))
#Added horizontal line at y=0, error bars to points and points with size two
p <- p + geom_hline(yintercept=0) +geom_errorbar(aes(ymin=Intercepts-sd.interc, ymax=Intercepts+sd.interc), width=0,color="black") + geom_point(aes(size=2))
#Removed legends and with scale_shape_manual point shapes set to 1 and 16
p <- p + guides(size=FALSE,shape=FALSE) + scale_shape_manual(values=c(1,1,1,16,16,16))
#Changed appearance of plot (black and white theme) and x and y axis labels
p <- p + theme_bw() + xlab("Levels") + ylab("")
#Final adjustments of plot
p <- p + theme(axis.text.x=element_text(size=rel(1.2)),
axis.title.x=element_text(size=rel(1.3)),
axis.text.y=element_text(size=rel(1.2)),
panel.grid.minor=element_blank(),
panel.grid.major.x=element_blank())
#To put levels on y axis you just need to use coord_flip()
p <- p+ coord_flip()
print(p)
Another way to do this is to extract simulated values from the distribution of each of the random effects and plot those. Using the merTools
package, it is possible to easily get the simulations from a lmer
or glmer
object, and to plot them.
library(lme4); library(merTools) ## for lmer(), sleepstudy
fit <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy)
randoms <- REsim(fit, n.sims = 500)
randoms
is now an object with that looks like:
head(randoms)
groupFctr groupID term mean median sd
1 Subject 308 (Intercept) 3.083375 2.214805 14.79050
2 Subject 309 (Intercept) -39.382557 -38.607697 12.68987
3 Subject 310 (Intercept) -37.314979 -38.107747 12.53729
4 Subject 330 (Intercept) 22.234687 21.048882 11.51082
5 Subject 331 (Intercept) 21.418040 21.122913 13.17926
6 Subject 332 (Intercept) 11.371621 12.238580 12.65172
It provides the name of the grouping factor, the level of the factor we are obtaining an estimate for, the term in the model, and the mean, median, and standard deviation of the simulated values. We can use this to generate a caterpillar plot similar to those above:
plotREsim(randoms)
Which produces:
One nice feature is that the values that have a confidence interval that does not overlap zero are highlighted in black. You can modify the width of the interval by using the level
parameter to plotREsim
making wider or narrower confidence intervals based on your needs.