Example 1: matplotlib plot
import matplotlib.pyplot as plt
fig = plt.figure(1) #identifies the figure
plt.title("Y vs X", fontsize='16') #title
plt.plot([1, 2, 3, 4], [6,2,8,4]) #plot the points
plt.xlabel("X",fontsize='13') #adds a label in the x axis
plt.ylabel("Y",fontsize='13') #adds a label in the y axis
plt.legend(('YvsX'),loc='best') #creates a legend to identify the plot
plt.savefig('Y_X.png') #saves the figure in the present directory
plt.grid() #shows a grid under the plot
plt.show()
Example 2: matplotlib line plot
from matplotlib import pyplot as plt
# Median Developer Salaries by Age
dev_x = [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]
dev_y = [38496, 42000, 46752, 49320, 53200,
56000, 62316, 64928, 67317, 68748, 73752]
plt.plot(dev_x, dev_y)
plt.xlabel('Ages')
plt.ylabel('Median Salary (USD)')
plt.title('Median Salary (USD) by Age')
plt.show()
#Basic line graph using python module matplotlib
Example 3: how do a plot on matplotlib python
import matplotlib.pyplot as plt
%matplotlib inline
plt.plot(data)
#this is not nessisary but makes your plot more readable
plt.ylabel('y axis means ...')
plt.xlabel('x axis means ...')
Example 4: matplotlib plot
>>> rng = np.arange(50)
>>> rnd = np.random.randint(0, 10, size=(3, rng.size))
>>> yrs = 1950 + rng
>>> fig, ax = plt.subplots(figsize=(5, 3))
>>> ax.stackplot(yrs, rng + rnd, labels=['Eastasia', 'Eurasia', 'Oceania'])
>>> ax.set_title('Combined debt growth over time')
>>> ax.legend(loc='upper left')
>>> ax.set_ylabel('Total debt')
>>> ax.set_xlim(xmin=yrs[0], xmax=yrs[-1])
>>> fig.tight_layout()