Print a cube's vertices and its covering triangles

CJam, 35 bytes

YZm*`3{[XY4]m<)\0+_:+1$f-+_@f+W%}%`

Try it online

The output is:

[[0 0 0] [0 0 1] [0 1 0] [0 1 1] [1 0 0] [1 0 1] [1 1 0] [1 1 1]][[1 2 0 2 1 3] [7 5 6 4 6 5] [2 4 0 4 2 6] [7 3 5 1 5 3] [4 1 0 1 4 5] [7 6 3 2 3 6]]

Triangle orientation is clockwise from the outside. I checked this manually, and it looks correct to me.

Explanation:

YZ      Push 2 and 3 on stack.
m*      Cartesian power, creates the coordinates of the 8 vertices.
`       Convert to string for output. Done with vertices.
3{      Start loop over 3 coordinate directions.
  [XY4]   Push [1 2 4], which are the vertex index offsets for the 3 directions.
  m<      Rotate by loop counter. So the remaining loop body will be executed once
          with [1 2 4], once with [2 4 1], once with [4 1 2].
  )       Pop off last offset. Will use this as index offset between the two
          parallel faces.
  \       Swap pair of remaining two offsets to top. These are the index offsets
          within the face.
  0+      Add a 0 to the list. These 3 indices define the first triangle.
  _:+     Calculate the sum. This is the vertex index of the opposite corner.
  1$      Copy first triangle to the top.
  f-      Subtract all indices from the index of the opposite corner, producing
          the second triangle of the face.
  +       Concatenate the indices of the two triangles, resulting in a list with
          the 6 vertex indices for the face.
  _       Copy the list.
  @       Bring the offset between the two faces to the top.
  f+      Add the offset to each index in the copied list.
  W%      Revert the order, resulting in the properly oriented list of the 6 vertex
          indices for the parallel face.
}%      End of loop over 3 coordinate directions.
`       Convert to string for output. Done with triangles.