Printing prime numbers from 1 through 100
If j
is equal to sqrt(i)
it might also be a valid factor, not only if it's smaller.
To iterate up to and including sqrt(i)
in your inner loop, you could write:
for (int j=2; j*j<=i; j++)
(Compared to using sqrt(i)
this has the advantage to not need conversion to floating point numbers.)
Three ways:
1.
int main ()
{
for (int i=2; i<100; i++)
for (int j=2; j*j<=i; j++)
{
if (i % j == 0)
break;
else if (j+1 > sqrt(i)) {
cout << i << " ";
}
}
return 0;
}
2.
int main ()
{
for (int i=2; i<100; i++)
{
bool prime=true;
for (int j=2; j*j<=i; j++)
{
if (i % j == 0)
{
prime=false;
break;
}
}
if(prime) cout << i << " ";
}
return 0;
}
3.
#include <vector>
int main()
{
std::vector<int> primes;
primes.push_back(2);
for(int i=3; i < 100; i++)
{
bool prime=true;
for(int j=0;j<primes.size() && primes[j]*primes[j] <= i;j++)
{
if(i % primes[j] == 0)
{
prime=false;
break;
}
}
if(prime)
{
primes.push_back(i);
cout << i << " ";
}
}
return 0;
}
Edit: In the third example, we keep track of all of our previously calculated primes. If a number is divisible by a non-prime number, there is also some prime <= that divisor which it is also divisble by. This reduces computation by a factor of primes_in_range/total_range.