Printing prime numbers from 1 through 100

If j is equal to sqrt(i) it might also be a valid factor, not only if it's smaller.

To iterate up to and including sqrt(i) in your inner loop, you could write:

for (int j=2; j*j<=i; j++)

(Compared to using sqrt(i) this has the advantage to not need conversion to floating point numbers.)


Three ways:

1.

int main () 
{
    for (int i=2; i<100; i++) 
        for (int j=2; j*j<=i; j++)
        {
            if (i % j == 0) 
                break;
            else if (j+1 > sqrt(i)) {
                cout << i << " ";

            }

        }   

    return 0;
}

2.

int main () 
{
    for (int i=2; i<100; i++) 
    {
        bool prime=true;
        for (int j=2; j*j<=i; j++)
        {
            if (i % j == 0) 
            {
                prime=false;
                break;    
            }
        }   
        if(prime) cout << i << " ";
    }
    return 0;
}

3.

#include <vector>
int main()
{
    std::vector<int> primes;
    primes.push_back(2);
    for(int i=3; i < 100; i++)
    {
        bool prime=true;
        for(int j=0;j<primes.size() && primes[j]*primes[j] <= i;j++)
        {
            if(i % primes[j] == 0)
            {
                prime=false;
                break;
            }
        }
        if(prime) 
        {
            primes.push_back(i);
            cout << i << " ";
        }
    }

    return 0;
}

Edit: In the third example, we keep track of all of our previously calculated primes. If a number is divisible by a non-prime number, there is also some prime <= that divisor which it is also divisble by. This reduces computation by a factor of primes_in_range/total_range.