priority queue in python code example
Example 1: heapq python how to use comparator
class Solution:
def mergeKLists(self, lists: List[ListNode]) -> ListNode:
setattr(ListNode, "__lt__", lambda self, other: self.val <= other.val)
pq = []
for l in lists:
if l:
heapq.heappush(pq, l)
out = ListNode(None)
head = out
while pq:
l = heapq.heappop(pq)
head.next = l
head = head.next
if l and l.next:
heapq.heappush( pq, l.next)
return out.next
Example 2: python priority queue
from queue import PriorityQueue
class PqElement(object):
def __init__(self, value: int):
self.val = value
def __lt__(self, other):
"""self < obj."""
return self.val > other.val
def __repr__(self):
return f'PQE:{self.val}'
pq = PriorityQueue()
pq.put(PqElement(v))
topValue = pq.get()
topValue = pq.queue[0].val
Example 3: python priority queue
class PriorityQueueSet(object):
"""
Combined priority queue and set data structure.
Acts like a priority queue, except that its items are guaranteed to be
unique. Provides O(1) membership test, O(log N) insertion and O(log N)
removal of the smallest item.
Important: the items of this data structure must be both comparable and
hashable (i.e. must implement __cmp__ and __hash__). This is true of
Python's built-in objects, but you should implement those methods if you
want to use the data structure for custom objects.
"""
def __init__(self, items=[]):
"""
Create a new PriorityQueueSet.
Arguments:
items (list): An initial item list - it can be unsorted and
non-unique. The data structure will be created in O(N).
"""
self.set = dict((item, True) for item in items)
self.heap = self.set.keys()
heapq.heapify(self.heap)
def has_item(self, item):
"""Check if ``item`` exists in the queue."""
return item in self.set
def pop_smallest(self):
"""Remove and return the smallest item from the queue."""
smallest = heapq.heappop(self.heap)
del self.set[smallest]
return smallest
def add(self, item):
"""Add ``item`` to the queue if doesn't already exist."""
if item not in self.set:
self.set[item] = True
heapq.heappush(self.heap, item)