Problem in a question concerning Geometric progression and quadratic equations
In your reasoning should be $\Delta\geq0$, but by C-S we obtain $\Delta\leq0,$
which gives $\Delta=0$ and we obtain a geometric progression again because $$(ab+bc+cd)^2=(a^2+b^2+c^2)(b^2+c^2+d^2)$$ says that $$(a,b,c)||(b,c,d).$$
By the way, $$(ap-b)^2+(bp-c)^2+(cp-d)^2\leq0$$ indeed gives $$ap-b=bp-c=cp-a=0.$$ But the rest is not full.
If $p=0$ thus, $b=c=d=0,$ which is impossible.
Thus, $p\neq 0$ and from here $a$, $b$, $c$ and $d$ are non-zero real numbers.
Thus, indeed, $\frac{b}{a}=\frac{c}{b}=\frac{d}{c}=p$ and we got a geometric progression.
The question did not require $f(p) \le 0$ for all values of p.
When y = f(p) opens upward and D > 0, the curve will cross the p-axis at two points. Those p that lie between these two points will cause $f(p) \le 0$