Proof: $\cos^p (\theta) \le \cos(p\theta)$

Set $f(\theta) = \cos p\theta - \cos^p \theta$ for some fixed $0 \leq p\leq 1$. Then for $\theta\in [0, \pi/2]$, $$f'(\theta) = p\left(\cos^{p-1}\theta \sin \theta - \sin p\theta\right) \geq p\left(\sin \theta - \sin p\theta\right) \geq 0,$$ since $\cos^{p-1}\theta \geq 1$ (as $p - 1\leq 0$) and $\sin \theta$ is increasing on $[0, \pi/2]$. Since $f(0) = 0$, it follows that $f$ is increasing and thus nonnegative on $[0, \pi/2]$, as required.


Let us fix the value of $\theta$ and vary $p$.

For $p=0$, $\cos^0(\theta)=\cos(0\theta)=1$.

For $p=1$, $\cos^1(\theta)=\cos(1\theta)=\cos(\theta)$.

Then, $$(\cos^p(\theta))''=(\log(\cos(\theta)))^2\cos^p(\theta)\ge0,$$ and $$(\cos(p\theta))''=-\theta^2\cos(p\theta)\le0.$$ The LHS function is concave down (negative exponential) and the RHS function is concave up (cosinusoid). They meet at endpoints without crossing.

enter image description here

With the straight line, this also establishes $$\color{blue}{\cos^p(\theta)}\le\color{magenta}{1-p(1-\cos(\theta))}\le\color{green}{\cos(p\theta)}.$$


Because cosine is concave on the interval $[0,\pi/2]$, we have $$ \cos(p\theta)=\cos(p\theta+(1-p)0)\geq p\cos(\theta)+(1-p)\cos(0)=p\cos(\theta)+(1-p). $$ So our desired inequality follows if we can prove that $$ \cos^p(\theta)\leq p\cos(\theta)+(1-p).\tag{*} $$ Clearly, (*) holds if $\theta=\frac{\pi}{2}$ (the LHS is $0$ while the RHS is nonnegative), so assume $\theta<\frac{\pi}{2}$. This assumption means $\cos(\theta)>0$ so that $\cos(\theta)-1>-1$, allowing us to apply Bernoulli's inequality: $$ \cos^p(\theta)=[1+(\cos(\theta)-1)]^p\leq 1+p(\cos(\theta)-1)=p\cos(\theta)+(1-p). $$ This completes our proof.