Proof that $ \frac{3\pi}{8}< \int_{0}^{\pi/2} \cos{\sin{x}} dx < \frac{49\pi}{128}$
Hint for one part, using this inequality and this one $$\cos{x} \geq 1 - \frac{x^2}{2}$$ we have $$\int\limits_{0}^{\frac{\pi}{2}}\cos{\sin{x}} dx > \int\limits_{0}^{\frac{\pi}{2}} \left(1-\frac{\sin^2{x}}{2}\right)dx=\frac{3 \pi}{8}$$
Follow-up to @rtybase:
$$ \cos x\le 1-\frac{x^2}2+\frac{x^4}{24}\implies \int_0^{\pi/2}\cos\sin xdx<\int_0^{\pi/2}\left(1-\frac{\sin^2 x}2+\frac{\sin^4 x}{24}\right)dx=\frac{49\pi}{128}. $$