Proof that the dimension of a matrix row space is equal to the dimension of its column space
You can consideradas the next explanation also for the fact that the row dimensión of a Matrix equals the column dimensión of a matrix. For that I will use what it's called the rank of a Matrix.
The rank $r$ of a Matrix can be defines as the number of non-zero singular values of the Matrix, So applying the singular value decomposition of the matrix, we get $A=U\Sigma V^T$. This implies that the range $dim(R(A))=r$, as the range of a is spanned by the first r columns of U. We know that the range of A is defined as the subspace spanned by the columns of A, so the dimension of it will be r.
If we take the transpose of the Matrix and compute it's svd, we ser that $A^T=V\Sigma^T U^T$, and as the Sigma Matrix remains the same number of non-zero elements as the one for A, the rank of this Matrix will still be r. So as done for A, the dimension for the range of $A^T$ is equal to r too, but as the range of $A^T$ id the row space of A, we conclude that the dimension for both spaces must be the same and equal to the range of the Matrix A.
Here is a more explicit step-by-step version of the proof quoted in the question.
Proof
Let $A\in\mathcal{M}_{m\times n}(\mathbb{K})$, where $\mathbb{K}$ is any field. Let $\{\boldsymbol{u^1},\ldots, \boldsymbol{u^k} \}$ be a basis of the column space of $A$, where $k\in\{1,\ldots,n\}$. $\boldsymbol{u^i}$ is a vector in $\mathbb{K}^m$ (the vector space of $m$-tuples with entries in $\mathbb{K}$) for all $i\in\{1,\ldots,k\}$. Thus each column in $A$ can be expressed as a linear combination of $\boldsymbol{u^1},\ldots,\boldsymbol{u^k}$. That is, for every $j\in\{1,\ldots,n\}$ there exist unique coefficients $\lambda_{1j},\ldots,\lambda_{nj}\in\mathbb{K}$ such that $$ \forall j\in\{1,\ldots,n\}\qquad \boldsymbol{v^j} = \sum_{\ell=1}^{k} \lambda_{\ell j} \boldsymbol{u^\ell}\,, $$ where $\boldsymbol{v^j}$ denotes the $j$-th column in $A$.
Let $B\in\mathcal{M}_{m\times k}(\mathbb{K})$ be the matrix with such vectors as columns: $$ B = \begin{pmatrix} \vert & & \vert \\ \boldsymbol{u^1} & \cdots & \boldsymbol{u^k} \\ \vert & & \vert \end{pmatrix}\,. $$ Let $[s]$ denote $\{1,\ldots,s\}$ for all $s\in\mathbb{N}$. Let $C\in\mathcal{M}_{k\times n}(\mathbb{K})$ be the matrix with the aforementioned coefficients: $$ C = (\lambda_{ij})_{(i,j)\in[k]\times[n]} = \begin{pmatrix} \lambda_{11} & \cdots & \lambda_{1n} \\ \vdots & \ddots & \vdots \\ \lambda_{k1} & \cdots & \lambda_{kn} \end{pmatrix}\,. $$
Now consider the matrix product $BC\in\mathcal{M}_{m\times n}(\mathbb{K})$. Let $(bc)_{ij}$, $b_{ij}$ and $c_{ij}$ denote the $(i,j)$-th element of $BC$, $B$ and $C$ respectively. By definition of matrix product, \begin{equation}\tag{1}\label{foo} (bc)_{ij} = \sum_{\ell=1}^{k} b_{i\ell}c_{\ell j} \qquad\forall (i,j)\in[m]\times[n]\,. \end{equation} Let us consider the $j$-th column of $BC$ for an arbitrary $j\in[n]$. Let $v^\ell_i$ denote the $i$-th component of $\boldsymbol{u^\ell}$ for all $\ell\in[k]$ and for all $i\in[m]$.
$$ \begin{multline*} \left((bc)_{ij}\right)_{i\in[m]} = \left( \sum_{\ell=1}^{k} b_{i\ell}c_{\ell j} \right)_{i\in[m]} = \begin{pmatrix} \sum_{\ell=1}^{k} b_{1\ell}c_{\ell j} \\ \vdots \\ \sum_{\ell=1}^{k} b_{m\ell}c_{\ell j} \end{pmatrix} = \\ % = \begin{pmatrix} \sum_{\ell=1}^{k} v^\ell_1\cdot\lambda_{\ell j} \\ \vdots \\ \sum_{\ell=1}^{k} v^\ell_m\cdot\lambda_{\ell j} \end{pmatrix} = \sum_{\ell=1}^k \lambda_{\ell j} % \begin{pmatrix} v^\ell_1 \\ \vdots \\ v^\ell_m \end{pmatrix} = \sum_{\ell=1}^{k} \lambda_{\ell j}\boldsymbol{u^\ell} = \boldsymbol{v^j}\,. \end{multline*} $$
Thus, the columns of $BC$ are the columns of $A$. Ergo, $A=BC$.
On the other hand, let us consider the $i$-th row of $A$, denoted by $\boldsymbol{r^i}$. That is, $$ \boldsymbol{r^i} = (a_{ij})_{j\in[n]} \qquad \forall i\in[m]\,. $$ Again, by the definition of matrix multiplication, $$ a_{ij} = \sum_{\ell=1}^{k} b_{i\ell}c_{\ell j} \qquad\forall (i,j)\in[m]\times[n] $$ (this is the same equation found in eq. \eqref{foo}). Thus,
$$ \begin{multline}\tag{2}\label{rows} \boldsymbol{r^i} = \left(\sum_{\ell=1}^{k} b_{i\ell}c_{\ell j} \right)_{j\in[n]} = \begin{pmatrix} \sum_{\ell=1}^{k} b_{i\ell}c_{\ell 1} & \cdots & \sum_{\ell=1}^{k} b_{i\ell}c_{\ell n} \end{pmatrix} = \\ = \begin{pmatrix} \sum_{\ell=1}^{k} v^\ell_i\cdot\lambda_{\ell 1} & \cdots & \sum_{\ell=1}^{k} v^\ell_i\cdot\lambda_{\ell n}\,. \end{pmatrix} \end{multline} $$
Now, let $\boldsymbol{\Lambda^\ell}$ be the $\ell$-th row of $C$ for all $\ell\in[k]$, as a row vector:
$$ \begin{equation*} \boldsymbol{\Lambda^\ell} = \begin{pmatrix} \lambda_{\ell 1} & \cdots & \lambda_{\ell n}\,. \end{pmatrix} \end{equation*} $$
Thus, with the same notation as before, ${\Lambda^\ell_i} = \lambda_{\ell i}$ for all $i\in[n]$. Also, let $\mu_{i \ell}$ denote $v^\ell_i$ for all $i\in[m]$ and for all $\ell\in[k]$ — this is merely a change of notation to remark the fact that $v^\ell_i$ can be seen as "coefficients". Thus, continuing to develop equation \eqref{rows}, we get
$$ \begin{multline*} \boldsymbol{r^i} = \begin{pmatrix} \sum_{\ell=1}^{k} \mu_{i\ell}\cdot\Lambda^\ell_1 & \cdots & \sum_{\ell=1}^{k} \mu_{i\ell}\cdot\Lambda^\ell_n \end{pmatrix} = \\ = \sum_{\ell=1}^k \mu_{i\ell} \begin{pmatrix} \Lambda^\ell_1 & \cdots & \Lambda^\ell_n \end{pmatrix} = \sum_{\ell=1}^k \mu_{i\ell} \boldsymbol{\Lambda^\ell}\,. \end{multline*} $$
Therefore, the rows of $A$ (i.e., $\boldsymbol{r^i}$) are linear combinations of the rows of $C$ (i.e., $\boldsymbol{\Lambda^\ell}$). Thus, we necessarily have $$ \mathrm{rowsp}\ A \subseteq \mathrm{rowsp}\ C \ \implies\ \dim (\mathrm{rowsp}\ A) \le \dim (\mathrm{rowsp}\ C)\,. $$ Since $C$ has $k$ rows, its row space can have at most dimension $k$, which is the dimension of $\mathrm{colsp}\ A$ (by hypothesis): $$ \dim(\mathrm{rowsp}\ C) \le k = \dim(\mathrm{colsp}\ A)\,. $$ Combining both inequalities, we have $$ \dim (\mathrm{rowsp}\ A) \le \dim (\mathrm{colsp}\ A)\,. $$
Applying this whole argument again on $A^\mathrm{t}$, $$ \dim (\mathrm{rowsp}\ A^\mathrm{t}) \le \dim (\mathrm{colsp}\ A^\mathrm{t}) \iff \dim (\mathrm{colsp}\ A) \le \dim (\mathrm{rowsp}\ A)\,. $$ Since we have both $\dim (\mathrm{rowsp}\ A) \le \dim (\mathrm{colsp}\ A)$ and $\dim (\mathrm{colsp}\ A) \le \dim (\mathrm{rowsp}\ A)$, we conclude that $$ \dim (\mathrm{colsp}\ A) = \dim (\mathrm{rowsp}\ A)\,. \quad \square $$