Prove formula for $\int \frac{dx}{(1+x^2)^n}$
Use integration by parts, $$I=\int\frac{dx}{(1+x^2)^n}=\int\frac{1}{(1+x^2)^n}\cdot 1\ dx $$ $$I=\frac{1}{(1+x^2)^n}\int 1 \ dx-\int \left((-n)\frac{2x}{(1+x^2)^{n+1}}\cdot x\right)dx$$ $$I=\frac{x}{(1+x^2)^n}+2n\int \left(\frac{(1+x^2)-1}{(1+x^2)^{n+1}}x\right)dx$$ $$I=\frac{x}{(1+x^2)^n}+2n\int \left(\frac{1}{(1+x^2)^{n}}-\frac{1}{(1+x^2)^{n+1}}\right)dx$$ $$I=\frac{x}{(1+x^2)^n}+2n\int \frac{dx}{(1+x^2)^{n}}-2n\int \frac{1}{(1+x^2)^{n+1}}dx$$ $$I=\frac{x}{(1+x^2)^n}+2nI-2n\int \frac{1}{(1+x^2)^{n+1}}dx$$ $$0=\frac{x}{(1+x^2)^n}+(2n-1)I-2n\int \frac{1}{(1+x^2)^{n+1}}dx$$ $$2n\int \frac{1}{(1+x^2)^{n+1}}dx=\frac{x}{(1+x^2)^n}+(2n-1)I$$ $$\int \frac{dx}{(1+x^2)^{n+1}}=\frac{x}{2n(1+x^2)^n}+\frac{(2n-1)}{2n}\int \frac{dx}{(1+x^2)^{n}}$$ setting $n=n-1$ $$\int \frac{dx}{(1+x^2)^{n}}=\frac{x}{(2n-2)(1+x^2)^{n-1}}+\frac{(2n-3)}{2n-2}\int \frac{dx}{(1+x^2)^{n-1}}$$
Note
$$\left( \frac{x}{(x^2+1)^{n-1}}\right)’ =\frac{3-2n}{(x^2+1)^{n-1}}+ \frac{2n-2}{(x^2+1)^{n}} $$ Then, integrate both sides to obtain
$$\int \frac{dx}{(1+x^2)^n} = \frac{1}{2n-2}\frac{x}{(x^2+1)^{n-1}}+\frac{2n-3}{2n-2}\int\frac{1}{(x^2+1)^{n-1}}dx $$