Prove that $2^{10}+5^{12}$ is composite
Use the binomial formulas. From $$(2^{5}+5^{6})^2=2^{10}+2\cdot 2^5\cdot 5^6+5^{12} $$ we conclude $$ 2^{10}+5^{12}=(2^{5}+5^{6})^2-(10^3)^2= (2^{5}+5^{6}+10^3)(2^{5}+5^{6}-10^3)$$
$$2^{10} + 5^{12} = (5^3)^4 + 4(2^2)^4 = 125^4 + 4\cdot4^4$$
And then the result follows from Sophie Germain's identity, ie, $$a^4 + 4b^4 = (a^2 + 2ab + 2b^2)(a^2 - 2ab + 2b^2)$$
Yielding, $$2^{10} + 5^{12} = (5^6 + 10^3 + 2^5)(5^6 - 10^3 + 2^5) = 16657\cdot 14657$$
Hint:
Use the Sophie Germain identity:
$$x^4+4y^4=(x^2+2xy+2y^2)(x^2-2xy+2y^2)=((x+y)^2+y^2)((x-y)^2+y^2)$$
$$5^{12}+2^{10}=(5^3)^{4}+4\cdot (2^2)^4$$